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S. R. Gozzini10, A. Hadamek5, D. Hadasch18, A. Herrero8,9, J. Hose6, D. Hrupec16, F. Jankowski10, V. Kadenius19,
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ABSTRACT

Context. BL Lacertae objects are variable at all energy bands on time scales down to minutes. To construct and interpret their spectral energy
distribution (SED), simultaneous broad-band observations are mandatory. Up to now, the number of objects studied during such campaigns is very
limited and biased towards high flux states.
Aims. We present the results of a dedicated multi-wavelength study of the high-frequency peaked BL Lacertae (HBL) object and known TeV
emitter 1ES 2344+514 by means of a pre-organised campaign.
Methods. The observations were conducted during simultaneous visibility windows of MAGIC and AGILE in late 2008. The measurements were
complemented by Metsähovi, RATAN-600, KVA+Tuorla,Swiftand VLBA pointings. Additional coverage was provided by theongoing long-term
F-GAMMA and MOJAVE programs, the OVRO 40-m and CrAO telescopes as well as theFermi satellite. The obtained SEDs are modelled using
a one-zone as well as a self-consistent two-zone synchrotron self-Compton model.
Results. 1ES 2344+514 was found at very low flux states in both X-rays and very high energy gamma rays. Variability was detected in the low
frequency radio and X-ray bands only, where for the latter a small flare was observed. The X-ray flare was possibly caused byshock acceleration
characterised by similar cooling and acceleration time scales.MOJAVE VLBA monitoring reveals a static jet whose components are stable over
time scales of eleven years, contrary to previous findings. There appears to be no significant correlation between the 15 GHz and R-band monitoring
light curves. The observations presented here constitute the first multi-wavelength campaign on 1ES 2344+514 from radio to VHE energies and
one of the few simultaneous SEDs during low activity states.The quasi-simultaneousFermi-LAT data poses some challenges for SED modelling,
but in general the SEDs are described well by both applied models. The resulting parameters are typical for TeV emitting HBLs. Consequently it
remains unclear whether a so-called quiescent state was found in this campaign.

Key words. Galaxies: active – BL Lacerae objects: individual: 1ES 2344+514 – Gamma rays: galaxies – X-rays: individuals: 1ES 2344+514 –
Radiation mechanisms: non-thermal
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1. Introduction

The number of known extragalactic very high energy (VHE,
>∼ 100 GeV) gamma-ray sources has been increasing steadily in
the past seven years and now exceeds 50 (November 2012)1.
Most of these sources are X-ray bright BL Lacertae (BL Lac)
objects. In BL Lacs the relativistic jet is nearly aligned with
the line of sight and the resulting large relativistic beaming
causes rapid variability in all energy regimes from radio wave-
lengths to VHE gamma rays. The spectral energy distribu-
tion (SED) of these objects shows two peaks; the low energy
peak is attributed to synchrotron emission, emitted by relativis-
tic electrons spiralling in the magnetic field lines of the jet,
while the high energy peak is generally considered to be pro-
duced by inverse Compton scattering. The seed photons for
the Compton scattering can be the synchrotron photons them-
selves (synchrotron self Compton, SSC, e.g. Maraschi et al.
1992; Bloom & Marscher 1996) or photons from an external
radiation field (accretion disk, broad line region clouds orin-
frared torus; Dermer & Schlickeiser 1993; Sikora et al. 1994;
Błażejowski et al. 2000). An alternate source has been proposed,
that the gamma rays are produced by hadronic processes, that
is by proton initiated cascades or directly through proton syn-
chrotron radiation (Mannheim & Biermann 1992; Mücke et al.
2003).

BL Lac objects were historically divided into two sub-
classes, depending on the energy of the synchrotron peak. The
class boundaries can be loosely defined such that low energy
peaking BL Lac objects (LBLs) have their peak at 1014−15 Hz
(optical regime) and high energy peaking BL Lacs (HBLs)
at > 1015 Hz (UV to hard X-rays) (e.g. Padovani & Giommi
1995). The class intermediate to these two was introduced by
Laurent-Muehleisen et al. (1999), noting that BL Lacs exhibit a
continuous range in SED peak energy rather than a dichotomy.
The BL Lac sources detected in VHE gamma rays mostly
belong to the HBL class. Their spectral energy distributions
can be described with one-zone SSC emission, but the mod-
elling requires rather high jet speeds while Very Long Baseline
Interferometry (VLBI) observations have shown that the parsec-
scale jets of these objects are comparably slow (Lorentz fac-
tor Γmodel ≈ 25 compared toΓVLBI . 5; Piner et al. 2010).
Therefore it has been suggested that the jet is decelerating
(Georganopoulos & Kazanas 2003) or has a spine-and-sheath
structure (Ghisellini et al. 2005). Recent VLBI observations of
the electric vector position angle and fractional polarisation
distribution in TeV blazars support the spine-sheath scenario
(Piner et al. 2010).

BL Lac objects show variability at all bands from radio to
VHE gamma rays. The variability amplitudes vary between the
different energy regimes and from source to source. The VHE
gamma-ray detected X-ray selected BL Lacs are typically quite
faint and mildly variable in the radio, show a large range of
variability in the optical band and are strongly variable inX-
rays. In the gamma-ray band they are often mildly variable
at sub-GeV – GeV energies, while in VHE gamma rays some
of the sources show extreme variability with amplitudes ex-
ceeding one order of magnitude and flux doubling time scales
as short as minutes (e.g. Mrk 421, Mrk 501, PKS 2155−304;
Acciari et al. 2011a; Albert et al. 2007a; Aharonian et al. 2007)
whereas others vary with smaller amplitude (e.g. 1ES 1215+303,

Send offprint requests to: S. Rügamer, e-mail:
snruegam@astro.uni-wuerzburg.de, E. Lindfors, e-mail:
elilin@utu.fi

1 http://tevcat.uchicago.edu/

PG 1553+113; Aleksić et al. 2012a,b). The variability is typi-
cally described in terms of “quiescence” and “flaring” epochs
(e.g. Acciari et al. 2011c).

Due to their variability and their broad-band emission, the
SED of BL Lacs has to be based on simultaneous obser-
vations at all energy ranges (simultaneous multi-wavelength
[MW] campaigns). For many sources the observations are con-
centrated on flaring epochs due to a higher detection prob-
ability. Simultaneous MW observations from radio to VHE
gamma rays in low flux states were for a long time scarce
for these objects due to limited sensitivity of the first genera-
tion of gamma-ray instruments. Even today such observations
are mostly available for the three brightest objects, Mrk 421,
Mrk 501 and PKS 2155−304 (see e.g. the most recent campaigns
in Abdo et al. 2011a,b; Abramowski et al. 2012).

1ES 2344+514 is an HBL at redshiftz = 0.044
(Perlman et al. 1996). It was first detected at VHE gamma rays
(above 300 GeV) by the Whipple telescope in 1995 during a
flare with a fluxF (> 350 GeV) = (6.6± 1.9) · 10−11 ph cm−2 s−1

(Catanese et al. 1998) and was at that time only the third known
extragalactic VHE gamma-ray source. Follow-up observations
in a lower state did not result in detections with high statisti-
cal significance until the MAGIC observations in 2005 – 2006
(Albert et al. 2007b). The source was not seen by EGRET (e.g.
Mukherjee et al. 1997) but was detected by theFermi-LAT with
a flux F (1− 100 GeV) = (1.55± 0.18) · 10−9 ph cm−2 s−1 and a
hard power law spectral index (1.72± 0.08) as reported in the
Fermi-LAT Second Source Catalog (2FGL; Nolan et al. 2012)
(see also Sect. 4.2.3). Like most HBLs it does not exhibit strong
variability in theFermi band (variability index∼28 in 2FGL,
while an index of> 41 was required to reject the null hypothesis
of no variability at the 99 % confidence level; Nolan et al. 2012).
Note that 1ES 2344+514 is formally not listed as a “clean”
source in theFermiAGN Catalog due to its low Galactic latitude
but nevertheless appears in the corresponding source tables.

In the X-ray band the source is bright with a 2 keV flux den-
sity of 1.14µJy (Perlman et al. 1996) and showed strong spec-
tral variability with the synchrotron peak shifting to higher ener-
gies with increasing flux (Giommi et al. 2000). In the high state,
the synchrotron peak frequency was at or above 10 keV, mak-
ing 1ES 2344+514 one of the few so-called “extreme blazars”
(Costamante et al. 2001) with synchrotron peak frequenciesin
the hard X-rays.Chandraobservations revealed diffuse X-ray
emission as well as seven individual point sources in its environ-
ment (Donato et al. 2003).

In the optical band the overall brightness of the source shows
only very moderate variability (of the order of 0.1 mag). This is
due to the bright host galaxy which contributes∼90 % to the
observed flux (Nilsson et al. 2007).

In the radio band the source is rather faint with a core
flux density Score(5 GHz) ≈ 0.07 Jy measured by VLBI
(Giroletti et al. 2004) and an overall flux density on arcsecond
scales ofSarcsec(5 GHz) = (0.23± 0.01) Jy (average of 18 F-
GAMMA 2 single-dish observations from 02/2007 to 04/2009).
Using Very Long Baseline Array (VLBA) imaging the apparent
jet speeds of different components have been determined to be
<∼ 3c with the most robust measurement of (0.62± 0.05)c found
for one individual feature (Piner & Edwards 2004; Piner et al.
2010). The lower frequency Very Large Array (VLA) maps
(kpc scale) showed an extended and complex radio structure at
1.4 GHz with∼45◦ misalignment compared to higher frequency

2 http://www.mpifr-bonn.mpg.de/div/vlbi/fgamma/fgamma.html
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Fig. 1. Sky map of the region around 1ES 2344+514 (marked by
a green cross). Green radio contours at 1.4 GHz are overlaid on
an R-band image. IR point sources are indicated by red circles.
An “X” and its label mark individual components identified by
Chandra(Donato et al. 2003). The logarithmic grey scale shows
scaled densities. Radio contours are given from 0.001 Jy/beam
to 0.241 Jy/beam in 20 logarithmically scaled steps. Only IR
sources of J magnitude< 15 are displayed. Data reference: X-
rays: Donato et al. (2003); optical: DSS2red; IR: 2MASS; radio:
NVSS, obtained from NED.

(5 GHz, pc scale) radio maps (Rector et al. 2003; Giroletti etal.
2004).

The combination of archival, non-simultaneous data in the
radio, optical and X-ray regime reveals that only one of the indi-
vidual X-ray components in the field of view of 1ES 2344+514
is bright at 1.4 GHz (component “E”, see Fig. 1). This com-
ponent coincides very well with the radio feature reported by
Rector et al. (2003) and Giroletti et al. (2004), but is not present
in the IR or R-band. Consequently, there are no other poten-
tial VHE candidate sources in the immediate vicinity of the
source at an angular separation smaller than the MAGIC an-
gular resolution of∼ 0.1◦. The nature of the radio feature can
not be identified unambiguously. Pulsars, being faint in theopti-
cal regime, would be viable candidates. However, Girolettiet al.
(2004) found a connection of the emission between the feature
and the core in VLA radio images. Also the proximity between
these two (angular distance of∼180′′, i.e.∼ 160 kpc) indicates
that they might be related. The jet of the AGN may bend on kpc
scales by∼ 45◦ and interact with the intergalactic medium, re-
sulting in a radio hot spot. The wide opening angle of the jet and
the low surface brightness on these scales do not support thein-
terpretation of the feature as a hot spot at this distance from the
core though. Moreover, this would be in contradiction to theuni-
fication scenario where the BL Lacs are suggested to be beamed
FR-I radio galaxies (Urry & Padovani 1995). Note, however,
that similar results have been found by e.g. Landt & Bignall
(2008); Kharb et al. (2010). Future VLBI measurements of the
radio spectrum of the feature may distinguish between the radio
hot spot or foreground/background source interpretation.

To date, 1ES 2344+514 has been studied in only one MW
campaign that included gamma-ray observations, conductedby
RXTE, Swiftand VERITAS (Acciari et al. 2011b). Giommi et al.

Table 1. Multi-wavelength observations of 1ES 2344+514.

Instrument Banda Observation Dateb

Effelsberg radio 56; 78; 106; 155
IRAM radio 25; 106; 137; 178
Metsähovi radio 30; 46; 124; 127; 130; 136; 138
OVRO radio 61 – 179
RATAN-600 radio 29 – 42
VLBA radio 61 – 62
CrAO R-band 74; 77; 85; 101; 105; 112; 117
KVA+Tuorla R-band 22 – 134
Swift UV & X-rays 30; 45 – 84
AGILE HE gamma rays 70 – 100
Fermi HE gamma rays 59 – 100
MAGIC-I VHE gamma rays 59 – 100

Notes. (a) The exact energy bands are given in Sect. 2.(b) The dates
are given in MJD−54700 and rounded down. In the case of OVRO,
RATAN-600, KVA+Tuorla,SwiftXRT and MAGIC-I, the given obser-
vation periods were not covered continuously.

(2012) reportedPlanck, Swift andFermi observations, covering
energies from radio to GeV, but detecting the source only in the
UV and X-ray bands. In this paper we present the first simulta-
neous radio to VHE gamma-ray observations of 1ES 2344+514.
The campaign was organised independently of the flux state
to allow investigations of a low, possibly “quiescent”, state of
the source. The observations were scheduled to give the best
simultaneous coverage between the different instruments, with
less than a day time difference between VHE, X-ray and opti-
cal bands. The time delays with respect to radio observations
were longer due to the longer variability time scale in this en-
ergy regime. The campaign took place in late 2008 shortly after
the launch of theFermi satellite. In total six radio observatories
contributed, including VLBA imaging of the source in several
frequency bands. 1ES 2344+514 was monitored in the optical
R-band by the CrAO, KVA and Tuorla telescopes, in ultraviolet
and X-rays bySwift UVOT and XRT and in high energy (HE)
gamma rays by AGILE andFermi. The core part of the campaign
was centred around the MAGIC VHE gamma-ray observations
of the source. Parts of the MW data sets have been presented in
Rügamer et al. (2011a,b). In this paper we present the complete
results of the campaign. We adopt a cosmology withΩm = 0.27,
ΩΛ = 0.73 andH0 = 71 km s−1 Mpc−1 for calculating radio
component linear sizes and proper motions.

The paper is organised as follows: in Sect. 2, we present short
descriptions of the various participating instruments, their obser-
vations as well as the corresponding data analyses. The results
will be shown in Sect. 3 and discussed in Sect. 4 including the
spectral energy distributions and the theoretical models.Final
remarks are given in Sect. 5.

2. Instruments, Multi-Wavelength Observations and
Data Analysis

In this section, the instruments participating in the MW cam-
paign, their observations and data reduction processes will be
presented ordered by their wavelength regime. A summary of
the observation dates is given in Table 1.

2.1. The MAGIC Telescope

The MAGIC (Major Atmospheric Gamma-ray Imaging
Cherenkov) project operates a system of two 17-m Imaging Air
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Cherenkov Telescopes located on the Canary Island of La Palma
2200 m above sea level (Aleksić et al. 2012c). MAGIC has
been operating in stereoscopic mode since 2009, accordingly
the observations presented in this paper were conducted with
MAGIC-I only (mono mode). MAGIC-I had a standard trigger
threshold of 60 GeV for observations at low zenith angles, an
angular resolution of∼0.1◦ for single events and an energy res-
olution above 150 GeV of∼25 % (for details, see Albert et al.
2008).

MAGIC-I observed 1ES 2344+514 from 20/10/2008 to
30/11/2008 at zenith angles between 23◦ and 31◦ for a total
of 26.4 hours in so-called wobble mode, where the source was
displaced by 0.4◦ from the camera centre in order to allow the
recording of simultaneous OFF-source data with the same offset
from the camera centre (Daum et al. 1997).

The data were analysed as described in Aleksić et al. (2010)
with the exception of the signal arrival time extraction. Instead
of determining the arrival time of the signal at the pulse maxi-
mum, which was needed at that time due to the special nature
of those data, the standard method of determining the signalar-
rival time at half of the rising flank was used here. 20.8 hoursof
data survived the quality selection. Background suppression was
accomplished by a cut in shower area versus shower SIZE (i.e.
total photoelectron content), optimised on 0.7 hours of data from
a high state of Mrk 421 taken during the same observing period
as 1ES 2344+514 and hence with similar data quality and obser-
vation conditions. The significance of the signal was determined
by a cut inθ2 optimised also on the Mrk 421 data set, whereθ
is the angular distance between the expected and reconstructed
source position. All significances of the VHE signals given in
the following sections were determined by Eq. 17 of Li & Ma
(1983) withα = 1/3, i.e. using 3 OFF regions.

The source spectrum has been derived from events withθ2 <
0.046 deg2, yielding an analysis threshold of∼ 190 GeV. Upper
limits (UL) were calculated by applying model 4 of Rolke et al.
(2005) using a confidence level (c.l.) of 95 %. The conversion
from the differential spectrum to spectral energy densityνFν has
been accomplished by multiplying the differential flux with the
energy of the Lafferty-Wyatt bin centre (Lafferty & Wyatt 1995)
squared.

The MAGIC analysis results presented here were confirmed
by an independent internal analysis.

2.2. The AGILE Satellite

AGILE (Astrorivelatore Gamma ad Immagini LEggero)
(Tavani et al. 2009) is a scientific mission of the Italian Space
Agency dedicated to the observation of astrophysical sources of
high energy gamma rays in the 30 MeV – 50 GeV energy range,
with simultaneous X-ray imaging capability in the 18 – 60 keV
band. AGILE is the first high-energy mission which makes use
of a silicon detector for the gamma ray to pair conversion. The
AGILE payload combines for the first time two coaxial instru-
ments: the Gamma-Ray Imaging Detector (GRID, composed
of a 12-planes Silicon-Tungsten tracker, a Cesium-Iodide mini-
calorimeter and the anti-coincidence shield) and the hard X-ray
detector Super-AGILE. The use of the silicon technology pro-
vides good performance of the gamma ray GRID imager in a
relatively small and compact instrument: an effective area of the
order of 500 cm2 at several hundred MeV, an angular resolution
of around 3.5◦ at 100 MeV, decreasing below 1◦ above 1 GeV,
a very large field of view (∼2.5 sr) as well as accurate timing,
positional and attitude information.

During the period 07/2007– 10/2009, AGILE was operated
in “pointing observing mode”, characterised by long observa-
tions called Observation Blocks (OBs), typically of two to four
weeks duration, mostly concentrated along the Galactic plane.
Since 11/2009 the satellite has been operating in “spinning ob-
serving mode”, surveying a large fraction (about 70 %) of thesky
each day. The time period covered by the 2008 MW campaign
includes the AGILE OB 6400, publicly available from the ASDC
Multimission Archive web page3. 1ES 2344+514 was observed
by AGILE at∼40◦ off-axis from the mean pointing direction in
the time window 31/10/2008 to 30/11/2008.

AGILE-GRID data from the official Processing
Archive (SPINNING sw= 5 21 18 19 and POINTING
sw= 5 19 18 17), obtained by using the AGILE Standard
Analysis Pipeline (Pittori et al. 2009), were analysed using the
latest scientific software (AGILESW 5.0 SourceCode) and
in-flight calibrations (I0023) publicly available since 30/09/2011
at the ASDC site4. Counts, exposure, and Galactic background
gamma-ray maps were created with a bin-size of 0.3◦ × 0.3◦,
for E > 100 MeV, selecting only events flagged as confirmed
gamma-ray events. Events collected during passages of the
South Atlantic Anomaly or whose reconstructed directions form
angles with the satellite-Earth vector smaller than 90◦ were
rejected to avoid Earth albedo contamination. In order to derive
the estimated flux (or flux upper limits) of the source we ran the
AGILE point source analysis software based on the maximum
likelihood technique using a radius of 10◦.

2.3. Fermi-LAT

The Fermi satellite started taking official science data on
4/08/2008 (Atwood et al. 2009). Two different detectors are
on board: the Gamma-ray Burst Monitor (GBM), sensitive at
low energies (8 keV – 40 MeV), and the Large Area Telescope
(LAT), sensitive at high energies (20 MeV –> 300 GeV).

Typically, theFermisatellite is rocked first towards the north
pole of the orbit and then, in the next orbit, towards the south,
alternating in this way the pointing in every orbit. This main
operating mode, called “All-Sky scanning mode”, allows forfull
sky coverage every two orbits, or three hours.

The LAT is a large field of view (∼ 2.4 sr) electron-positron
pair conversion telescope made up of a high-resolution silicon
microstrip tracker, a CsI hodoscopic electromagnetic calorimeter
and an anti-coincidence detector for the identification of charged
particle backgrounds. The full description of the instrument and
its performance can be found in Atwood et al. (2009). The LAT
point spread function (PSF) depends strongly upon the energy
of the impinging gamma ray and on the depth of the conversion
point in the tracker, and mildly upon the incidence angle. For
normal-incidence conversions in the upper section of the tracker,
the PSF 68 % containment radius is 0.6◦ for 1 GeV photons and
amounts to∼ 0.04◦ above 100 GeV.

TheFermi-LAT data for 1ES 2344+514 presented here were
obtained in the time period between 20/10/2008 22:35:00 UTC
and 30/11/2008 21:31:00 UTC coordinated with the observa-
tions with MAGIC. The data have been analysed by using the
standardFermi-LAT Science Tools software package, version
09-27-01 as described in the Cicerone website5. The Pass 7
Source event class and P7SOURCEV6 instrument response
functions (Atwood et al. 2009) were used in our analysis. We se-

3 http://www.asdc.asi.it/mmia/index.php?mission=agilemmia
4 http://agile.asdc.asi.it/publicsoftware.html
5 http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/
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lected events in a region of interest (RoI) centred on the source
position within 15◦, having an energy between 100 MeV and
300 GeV. In order to avoid background contamination from the
bright Earth limb, time intervals when the Earth entered theLAT
RoI were excluded from the data set. In addition, events with
zenith angles larger than 100◦ with respect to the Earth refer-
ence frame (Abdo et al. 2009a) were excluded from the analy-
sis. The data were analysed with anunbinnedmaximum like-
lihood technique, described in Mattox et al. (1996), using the
analysis software (gtlike) developed by the LAT team and de-
scribed in the Cicerone website mentioned above. The fitting
procedure maximises the likelihood acting simultaneouslyon
the free spectral parameters for the source of interest, those of
nearby gamma-ray sources and the diffuse backgrounds, mod-
elled usingring 2yearP76 v0 for the Galactic diffuse emission
andisotrop 2yearP76 sourcev0 for the extragalactic isotropic
emission models6. To maintain comparability, photon fluxes
were converted to spectral energy densities applying the same
method as used for AGILE.

In addition we also performed a dedicated analysis of
the highest energy photons (> 100 GeV) detected from
1ES 2344+514 within the first 44 months of LAT operation.
Only events of the purest class (Pass7 V6 Ultraclean) from a
68 % containment radius around the direction of the source were
considered for this analysis.Front and back photons, accord-
ingly to the definition in Atwood et al. (2009), were treated sepa-
rately, having a different distribution of the PSF. Since no results
on such events over this long time scale have been reported in
literature, the analysis has been applied to four additional TeV
HBLs with a comparable redshift (Mrk 421, Mrk 501, Mrk 180
and 1ES 1959+650).

2.4. Swift

The Swift satellite (Gehrels et al. 2004) is equipped with three
telescopes, the Burst Alert Telescope (BAT; Barthelmy et al.
2005) which covers the 14 – 195 keV energy range, the X-
ray telescope (XRT; Burrows et al. 2005) covering the 0.2 –
10 keV energy band, and the UV/Optical Telescope (UVOT;
Roming et al. 2005) covering the 180 – 600 nm wavelength
range with V, B, U, UVW1, UVM2 and UVW2 filters.

Swift XRT observed 1ES 2344+514 from 09 – 11/2008 with
a total of 21 exposures (see Table A.1) with exposure times rang-
ing from 200 s to 5 ks. The two exposures lasting well below 1 ks
were too short for deriving a flux and were therefore excluded
from the analysis. The XRT data were processed with stan-
dard procedures using the FTOOLS task XRTPIPELINE (ver-
sion 0.12.6) distributed by HEASARC within the HEASOFT
package (v.6.10). Events with grades 0 – 12 were selected (see
Burrows et al. 2005) and latest response matrices availablein the
SwiftCALDB (v.20100802) were used. For the spectral analysis
the source events were extracted in the 0.3 – 10 keV range within
a circle with a radius of 20 pixels (∼47′′). The background was
extracted from an off-source circular region with a radius of 40
pixels. The spectra were extracted from the corresponding event
files and binned using GRPPHA to ensure a minimum of 25
counts per energy bin, in order to guarantee reliableχ2 statistics
(Gehrels 1986). Spectral analyses were performed using XSPEC
version 12.6.0. The spectral index was determined using an ab-
sorbed power law fit (f0 · E−α · e−τ) from 0.3 – 10 keV, with
the absorptionτ being the product of the absorption hydrogen-
equivalent column density NH and the element-specific energy-

6 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

dependent photoelectric cross sectionσ (E). NH was fixed to the
Galactic value in the direction of the source of 1.5 · 1021 cm−2

(Kalberla et al. 2005). Not fixing this parameter, the XRT data
analysis yields a value of(2.0± 0.2) · 1021 cm−2. Since some
daily data sets showed hints of spectral curvature, also fitsusing
a log-parabola model (f0 · E−(a+b log10(E)) · e−τ) were performed.
However, for the majority of the cases the log-parabola fit was
not significantly preferred by a logarithmic likelihood ratio test
over the simple power law model (see Table A.1). Therefore, the
simple power law results were used as a common basis.

For the long-term source evolution, 67 observations of
1ES 2344+514 between 2005 and 2010 were analysed. A
slightly different analysis procedure was used compared to
the MW data reduction. The spectra were determined using
XSELECT (V2.4b) to extract events with an energy of 0.5 –
10 keV from the corresponding event files. The background was
deduced from an annulus around the source with an inner radius
of 50 pixels (∼118′′) and an outer radius of 70 pixels (∼165′′).
Spectral analysis and binning was performed in ISIS (V 1.6.2-
3), where a minimum signal to noise ratio of 5 was required
for grouping the data. The spectral index was determined in the
range 0.5 – 10 keV using an absorbed power law fit. To calcu-
late the integral flux the photon flux was evaluated on a fine
grid between 2 and 10 keV. The neutral hydrogen-equivalentcol-
umn density was determined for each spectrum from the spec-
tral fit, yielding for spectra with a d.o.f.> 35 a mean value of
(1.71± 0.14) · 1021 cm−2. Flux errors are given at a 90 % confi-
dence level. The event counts for calculating the hardness ratios
for the MW data were extracted applying this pipeline in the full
energy range.

Swift UVOT observed the source with all filters (V, B, U,
UVW1, UVM2, UVW2) each time. The source counts were
extracted from a circular region 5 arcsec-sized centred on the
source position, while the background was extracted from a
larger circular nearby source-free region. These data werepro-
cessed with theuvotmaghist task of the HEASOFT package.
The observed magnitudes have been corrected for Galactic ex-
tinction EB−V = 0.191 mag (Schlafly & Finkbeiner 2011) using
the extinction curve from Fitzpatrick (1999) adoptingRV = 3.07
(McCall & Armour 2000). The host-galaxy flux contributes sig-
nificantly to the observed brightness in the V-, B- and U-bands,
however no values for the contribution were found in the lit-
erature. Therefore, the contribution is estimated from theR-
band value from Nilsson et al. (2007) (aperture 5′′) using the
galaxy colours atz = 0 from Fukugita et al. (1995) resulting
in V = (1.96± 0.16) mJy, B = (0.95± 0.20) mJy and U =
(0.22± 0.20)mJy. In these bands the host galaxy contributes
∼ 80 – 90 % to the measured flux and additionally the uncertainty
of the host-galaxy contribution is rather large. Thereforethese
bands are not considered for spectral energy distribution mod-
elling.

The magnitudes measured in the UV filters were converted to
units of erg cm−2 s−1 using the photometric zero points as given
in Breeveld et al. (2011) and effective wavelengths and count-
rate-to-flux ratios of GRBs from theSwift UVOT CALDB 02
(v.20101130). Raiteri et al. (2010) noted that these ratiosare not
necessarily applicable to BL Lac objects, due to their different
spectrum and a B – V value typically larger than the applica-
ble range. Therefore, they determined the UVOT effective wave-
lengths and count-rate-to-flux ratios anew (for BL Lacertae, an
LBL at z= 0.069). We compare these values with the ones used
in this work and find that the difference amounts to. 1 % for
the V, B and U filters. In the case of the UV bands, the effective
wavelengths (count-rate-to-flux ratios) are∼7 % (∼ 2 %),∼ 3 %
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(∼1 %) and∼9 % (∼13 %) larger for the UVW1, UVM2 and
UVW2 filters, respectively. These differences are smaller than
or comparable to the intrinsic errors of the corresponding values
with the exception of the UVW2 count-rate-to-flux ratio (intrin-
sic error of∼ 2 %). Therefore we did not apply a new calibra-
tion but increased the error of the UVW2 count-rate-to-flux ratio
from∼2 % to 13 % to account for a potential change in this value
as large as found by Raiteri et al. (2010). However the actualun-
certainty should be much below that, considering that some (if
not most) of the difference between the ratios arises solely from
using new effective wavelengths, which is not the case in this
work.

Swift BAT operates in full sky mode. The BAT data of
1ES 2344+514, taken from the 58-Month Catalog7, have been
re-binned using the toolrebingausslc from the HEASOFT
package to weekly (7 days), monthly (30.44days), quarterly
(91.31days) and yearly (365.24days) bins. The default settings
for the bin centre ofrebingausslc have been used, no trials
have thus been made for selecting the binning. Integral fluxes
were calculated according to Tueller et al. (2010) by multiplying
the Crab-normalised count rate of 1ES 2344+514 with the Crab
flux measured in the same time interval and energy band. These
fluxes were then converted to spectral energy densities in each
energy band at the Lafferty-Wyatt bin position (Lafferty & Wyatt
1995) assuming a simple power law with a spectral index of 2.62
as given in the BAT 58-Month Catalog.

2.5. KVA and Tuorla

1ES 2344+514 has been monitored in the optical R-band by the
Tuorla Blazar Monitoring Program since 20028. The observa-
tions are done using the Tuorla 1-m telescope (Finland) and
the Kungliga Vetenskapsakademien (KVA) 35-cm telescope (La
Palma). The latter can be controlled remotely from the Tuorla
Observatory. In the following, “KVA” will be used as a syn-
onym for “KVA+Tuorla”. The source is typically observed a
few times per week, but during theSwift pointings mechanical
problems prevented KVA observations. The photometric mea-
surements are made in differential mode, i.e. by obtaining CCD
images of the target and calibrated comparison stars in the same
field of view (Fiorucci et al. 1998). The magnitudes of the source
and comparison stars are measured using aperture photometry
and the (colour corrected) zero point of the image determined
from the comparison star magnitudes. The object magnitude is
computed using the zero point and a filter-dependent colour cor-
rection. Magnitudes are then transferred to linear flux densities
using the formulaF = F0 · 10mag/−2.5, where mag is the magni-
tude of the object andF0 is a filter-dependent zero point (in the
R-band the valueF0 = 3080 Jy is used from Bessell 1979).

Since 1ES 2344+514 has a bright host galaxy and a nearby
star that contributes to the observed flux, these contributions
have to be removed in order to derive the core flux for the spec-
tral energy distribution. Nilsson et al. (2007) determinedthese
contributions which depend on seeing and the aperture used for
the measurement. Since all observations for this campaign were
done with constant aperture (7.5′′) and in similar seeing condi-
tions, we subtract a constant value of(3.70± 0.05) mJy.

7 After an update, the 58-Month Catalog contains as of now
(10/2012) the results from the first 66 months of observation.

8 http://users.utu.fi/kani/1m/

2.6. CrAO

Observations from the Crimean Astrophysical Observatory
(CrAO) were obtained with the AZT-11 telescope and an FLI
IMG1001E CCD camera, through an R-band filter. Differential
photometry was performed between the blazar and published
comparison stars on the same CCD frame. The comparison stars
and apertures used were the same as for KVA. The resulting
magnitudes were converted to mJy using the standard formula.
The CrAO flux densities were found to be∼12 % lower than
the KVA points and were shifted by a fixed value (∼0.49 mJy)
to match the KVA observations. The corresponding shift has
been deduced from the average flux density difference between
both telescopes for nights with an observation time difference
< 0.3 days. Two out of seven data point pairs satisfied this con-
dition. A difference of∼ 10 % is expected due to CrAO using the
Johnson R-band filter whereas KVA is measuring in the Cousins
R-band filter.

2.7. Effelsberg 100-m and IRAM 30-m Radio Telescopes

Quasi-simultaneous cm-to-mm radio spectra have been ob-
tained within the framework of aFermi related monitoring
program of gamma-ray blazars, namely the F-GAMMA pro-
gram (Fuhrmann et al. 2007; Angelakis et al. 2008). The total
frequency range spans from 2.64 GHz to 228.4GHz using the
Effelsberg 100-m and IRAM 30-m telescopes. The millimetre
observations are closely coordinated with the more generalflux
monitoring conducted by IRAM, and observations of both pro-
grams are included in this paper. 1ES 2344+514 has been ob-
served in late 2008 once a month with these facilities.

The Effelsberg measurements were conducted with the sec-
ondary focus heterodyne receivers at 2.64, 4.85, 8.35, 10.45,
14.60, 23.05, 32.00 and 43.00GHz. The observations were per-
formed quasi-simultaneously with “cross-scans” (that is,slew-
ing over the source position in azimuth and elevation direction),
with an adaptive number of sub-scans for reaching the desired
sensitivity (for details see Fuhrmann et al. 2008; Angelakis et al.
2008). Subsequently, pointing off-set corrections, gain correc-
tions and atmospheric opacity corrections have been applied to
the data. The conversion to Jy has been done using the standard
calibrators: 3C 48, 3C 161, 3C 286, 3C 295 and NGC 7027. The
standard deviation of the flux calibrators amounts to< 5 % at
43.00 GHz and< 1 % at 2.64 GHz. The Effelsberg error bars are
given including systematic uncertainties.

IRAM (Institut de Radioastronomie Millimétrique) operates
a 30-m radio telescope located on Pico Veleta near Granada
in Spain. The IRAM observations of 1ES 2344+514 and pri-
mary/secondary calibrators were carried out with calibrated
cross-scans using the receivers operating at 86.2 and 142.3GHz,
occasionally also at 228.4 GHz. The opacity corrected scans
were converted into the standard temperature scale and finally
corrected for small remaining pointing offsets and systematic
gain-elevation effects. The conversion to the Jy flux density scale
was done using the instantaneous conversion factors derived
from the frequently observed primary (Mars, Uranus) and sec-
ondary (W3(OH), K3-50A, NGC 7027) calibrators.

2.8. Metsähovi 14-m Radio Telescope

The 37 GHz observations were conducted with the 13.7-m di-
ameter Metsähovi radio telescope, which is a radome-enclosed
paraboloid antenna in Finland. The measurements were made
with a 1 GHz-band dual beam receiver centred at 36.8 GHz. The
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HEMPT (high electron mobility pseudomorphic transistor) front
end operates at room temperature. The observations are ON –
ON observations, alternating the source and the sky in each feed
horn. A typical integration time to obtain one flux density data
point is between 1200 and 1400 s. The detection limit of the tele-
scope at 37 GHz is of the order of 0.2 Jy under optimal condi-
tions. Data points with a signal to noise ratio< 4 are considered
as non-detections.

The flux density scale is set by observations of DR 21. The
sources NGC 7027, 3C 274 and 3C 84 are used as secondary cal-
ibrators. A detailed description of the data reduction and analysis
is given in Teräsranta et al. (1998). The error estimate in the flux
density includes the contribution from the measurement rmsand
the uncertainty of the absolute calibration.

2.9. OVRO 40-m Radio Telescope

Regular 15.0 GHz observations of 1ES 2344+514 were carried
out as part of a high-cadence gamma-ray blazar monitoring pro-
gram using the Owens Valley Radio Observatory (OVRO) 40-
m telescope (Richards et al. 2011). This program, which com-
menced in late 2007, now includes about 1600 sources, each ob-
served with a nominal twice per week cadence. Data during the
beginning of this MW campaign were unavailable due to a hard-
ware outage. The OVRO 40-m results used in this paper span the
period 22/10/2008 to 11/02/2012.

The OVRO 40-m uses off-axis dual-beam optics and a cryo-
genic high electron mobility transistor (HEMT) low-noise am-
plifier with a 15.0 GHz centre frequency and 3 GHz bandwidth.
The total system noise temperature is about 52 K, including re-
ceiver, atmosphere, ground, and CMB contributions. The two
sky beams are Dicke-switched using the off-source beam as a
reference, and the source is alternated between the two beams
in an ON – ON fashion to remove atmospheric and ground con-
tamination. A noise level of approximately 3 – 4 mJy in quadra-
ture with about 2 % additional uncertainty, mostly due to point-
ing errors, is achieved in a 70 s integration period. Calibration
is achieved using a temperature-stable diode noise source to re-
move receiver gain drifts. The flux density scale is derived from
observations of 3C 286 assuming a value of 3.44 Jy at 15.0 GHz
(Baars et al. 1977). The systematic uncertainty of about 5 % in
the flux density scale is not included in the error bars. Complete
details of the reduction and calibration procedure are found in
Richards et al. (2011).

2.10. RATAN-600

The radio spectrum of 1ES 2344+514 was observed with the
600-m ring radio telescope RATAN-600 (Korolkov & Pariiskii
1979) of the Special Astrophysical Observatory, Russian
Academy of Sciences, located in Zelenchukskaya, Russia, from
20/09/2008 to 03/10/2008. The continuum spectrum was mea-
sured six times quasi-simultaneously (within several minutes)
in a transit mode with six different receivers at the follow-
ing central frequencies (and frequency bandwidths): 0.95 GHz
(0.03 GHz), 2.3 GHz (0.25GHz), 4.8 GHz (0.6 GHz), 7.7 GHz
(1.0 GHz), 11.2 GHz (1.4 GHz), 21.7 GHz (2.5 GHz). Due to ra-
dio frequency interference, we were unable to detect the source
at the two longest wavelengths. An average spectrum of the six
independent 5 – 22 GHz measurements is presented in this paper.
Details on the method of observation, data processing, and am-
plitude calibration are described by Kovalev et al. (1999).The

data were collected using the southern sector with the Flat re-
flector.

2.11. VLBA

1ES 2344+514 was observed with the VLBA (Napier 1995) on
23/10/2008 at 4.6, 5.0, 8.1, 8.4, 15.4, 23.8 and 43.2 GHz in
the framework of a survey of parsec-scale radio spectra of 20
gamma-ray bright blazars (Sokolovsky et al. 2010b). The obser-
vations were conducted with ten on-source scans (each four to
seven minutes long depending on frequency) spread over eleven
hours. The data reduction was performed in the standard manner
using the AIPS package (Greisen 1990). An amplitude calibra-
tion procedure similar to the one described in Sokolovsky etal.
(2011) was applied, resulting in∼ 5 % calibration accuracy at the
4.6 – 15.4 GHz range and∼ 10 % accuracy at 23.8 and 43.2 GHz.
The Difmap software (Shepherd 1997) was used for imaging and
modelling of the visibility (uv) data. The integrated parsec-scale
flux densities were derived by summing all CLEAN (Högbom
1974) components used to represent calibrated visibilities.

1ES 2344+514 was also observed with VLBA at 15.4 GHz
during the campaign as a part of the MOJAVE (Monitoring Of
Jets in Active galactic nuclei with VLBA Experiments)9 long-
term program to monitor radio brightness and polarisation varia-
tions in jets associated with active galaxies visible in thenorthern
sky. The data were analysed using the standard procedures (see
Lister et al. 2009a,b). Elliptical Gaussian components were used
to determine positions and flux densities of individual emission
regions within the source. The MOJAVE archive contains two
sets of VLBA data on this source at 15.4 GHz. One set contains
four epochs published in Piner & Edwards (2004) that span the
range 10/1999 to 03/2000. The second consists of ten epochs
covering 05/2008 to 11/2010.

3. Results

3.1. Very High Energy Gamma Rays

The MAGIC data analysis yielded a marginal signal of 3.5σ
for the complete data set (see Fig. 2 and for detailed results
Table A.2), which is below the 5σ standard for source dis-
coveries in VHE astronomy. Since 1ES 2344+514 is a well-
established VHE emitter and the direct environment is lacking
suitable alternative source candidates (see Sect.1), we assume
that the entire excess comes from the source. The rather long
observation time of∼ 20 hours and the fairly large events statis-
tics not dominated by individual features in time makes us con-
fident about the reliability of the signal. Therefore, we derived
an average spectrum.

The measured (EBL de-absorbed) spectra are rather well fit-
ted (χ2/d.o.f . = 0.36/1 for both of them; see also the residuals
shown in Fig. 3) by a simple power law of the form

dN
dE
= f0 · 10−12 TeV−1 cm−2 s−1 · (E/E0)−α (1)

yielding f0 = 4.0 ± 1.2 (4.8 ± 1.5) at E0 = 0.5 TeV andα =
2.4± 0.4 (2.2± 0.4) (see Fig. 3). The given errors are statistical
only. We adopt the MAGIC standard systematic errors of 16 %
on the energy scale, 11 % on the flux normalisation and±0.2
on the spectral index (Albert et al. 2008). The low redshift of
the source renders differences between the current extragalactic
background light (EBL) models negligible. Here, the effects of

9 http://www.physics.purdue.edu/MOJAVE/
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Fig. 3. Top panel: Measured (blue, filled circles) and de-
absorbed (red, open circles) MAGIC spectra for 1ES 2344+514,
shown together with the MAGIC 2005 spectrum of
1ES 2344+514 (Albert et al. 2007b) as well as the MAGIC
Crab spectrum (Albert et al. 2008). Upper limits were derived
with a c.l. of 95 %.Bottom panel:Fit residuals defined as the
difference between flux and fit divided by the flux value.

EBL absorption were corrected by applying the Kneiske “lower
limit” model (Kneiske & Dole 2010).

No significant variability could be found over the entire ob-
servation period on daily time scales, as can be seen from the
light curve in Fig. 4 (note that the fluxes are calculated subtract-
ing OFF data from ON data and can therefore become nega-
tive) and the flux values given in Table A.2. The overall flux
F (> 170 GeV) amounted to (7.4± 2.1) · 10−12 ph cm−2 s−1. A fit
with a constant yields aχ2/d.o.f . = 19.0/13, which gives∼12 %
probability for a constant flux. The low probability arises domi-
nantly from the negative fluctuation around MJD 54767 and the
highest flux point at MJD 54787. The latter is indicating a higher
state of the source, but since the point is less than 2σ above the
fit line, it statistically does not give evidence for variability. The
measurements exclude a rise in flux by more than a factor of∼ 9
of the mean flux (derived from the highest 3σ UL calculated for
all light curve points), while the peak flux above 300 GeV re-
ported by Acciari et al. (2011b) was a factor of∼ 20 higher than
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Fig. 4. MAGIC light curve of 1ES 2344+514 derived from this
campaign. The red points give daily fluxes. For points having
a flux consistent with or below zero, shown by the grey trian-
gles, 95 % c.l. upper limits were calculated. The red bar on top
of each upper limit arrow visualises the bin width. A fit with a
constant to all daily flux points is shown by the red dashed line.
Additionally, the fluxes for the two observation periods (see also
Table A.2) are given as blue full squares.

the average fluxF (> 300 GeV) = (3.4± 1.0) · 10−12 ph cm−2 s−1

found here. Fitting the period-wise light curve, theχ2/d.o.f . =
4.0/1 (probability∼ 5 %), which is still consistent with the hy-
pothesis of a constant flux of the source.

Above 200 GeV, the integral flux amounted to(5.5± 1.7) ·
10−12 ph cm−2 s−1, more than a factor 4 lower than the former
MAGIC detection (which, at the time, constituted the lowest
flux measured of this source at VHE). Compared to the av-
erage flux measured by VERITAS> 300 GeV in 2008 (see
Acciari et al. 2011b), the average flux found here is still lower
by a factor of> 3 and hence represents the lowest flux re-
ported from 1ES 2344+514 at low VHE thresholds up to now.
At high energies the HEGRA collaboration reported a flux
F (> 970 GeV) = (6.0± 1.9) · 10−13 ph cm−2 s−1 after 72.5 hours
of observation time between 1997 and 2002 (Aharonian et al.
2004), which is comparable to our result (F (> 970 GeV) =
(4.8± 3.1) · 10−13 ph cm−2 s−1).

Previous observations of 1ES 2344+514 at VHE confirmed
spectral variability, as expected for a BL Lac type object.
The spectral index has ranged from 2.43 ± 0.22stat ± 0.15syst
(Acciari et al. 2011b) to 2.95 ± 0.12stat ± 0.2syst (Albert et al.
2007b) with a trend of a hardening of the spectrum with in-
creasing flux. In contrast, the value of 2.4 ± 0.4 found here in-
dicates a hard spectrum despite a very low flux state. However,
these results are still consistent with most of the archivalmea-
surements due to the large statistical errors. A hard spectral
index would imply that the second SED peak was located at
unusually high energies for that flux level, opposite to the
spectral hardening trend observed for the best studied blazars
(e.g. Mrk 421, Mrk 501, PKS 2155−304; Fossati et al. 2008;
Albert et al. 2007a; Abramowski et al. 2010).

3.2. High Energy Gamma Rays

AGILE-GRID did not detect the source. The AGILE maximum
likelihood analysis using the latest in-flight calibrations yielded a
95 % c.l. UL on the flux above 100 MeV of 3.7·10−8 ph cm−2 s−1

from an effective exposure of∼ 2.8·108 cm2 s for the MW obser-
vation period. Searching for short flares on time scales of seven
as well as two days did not yield any detection. Also for the
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entire period from 07/2007 up to 01/2011, the source was not
detected by AGILE. A 95 % c.l. UL on the flux> 100 MeV of
2.7 · 10−8 ph cm−2 s−1 was derived, consistent with the 2FGL av-
erage flux above 100 MeV which is about 0.9 · 10−8 ph cm−2 s−1.
Given the non-detection of the source we adopt a “standard”
spectral photon index of 2.1 for the likelihood analysis.

Fermi-LAT did not detect 1ES 2344+514 between 0.1 and
300 GeV during the campaign (effective exposure:∼ 3.7 ·
109 cm2 s). The data were searched for short-time variability on
daily and weekly time scales without a clear sign of such. The
2-year Catalog public light curve does not show significant vari-
ability on time scales of months around the time of the MW cam-
paign. Upper limits at a 95 % c.l. have been determined applying
the standard Bayesian approach for the MW time slot, assuming
a spectral index of 2.1 to be consistent with the AGILE calcula-
tions. These amount to (in ph cm−2 s−1) 3.0·10−8 (0.1 – 0.3 GeV),
6.7 · 10−9 (0.3 – 1.0 GeV), 2.7 · 10−9 (1.0 – 3.0 GeV), 8.8 · 10−10

(3.0 – 10 GeV) and 8.6 · 10−10 (10 – 100 GeV).
1ES 2344+514 is rather dim for a TeV AGN in theFermi

band. It was detected for the first time after 5.5 months of obser-
vations (Abdo et al. 2009b). From the first (1FGL; Abdo et al.
2010) to the second (Nolan et al. 2012) LAT Source Catalog list-
ing, the measured fluxes from 1 – 100 GeV and spectral power
law indices changed from(1.40± 0.30) · 10−9 ph cm−2 s−1 to
(1.55± 0.18) · 10−9 ph cm−2 s−1 and 1.57± 0.12 to 1.72± 0.08,
respectively. These values are consistent within the statistical er-
rors, indicating that the spectral shape did not change signifi-
cantly on these time scales. Also the monthly light curve shows
mostly upper limits and marginal detections without signs of ma-
jor flares. In fact, only one flux point from the monthly binned
Fermi-LAT data is available for 1ES 2344+514 within the first
nine months of regular measurements, the remaining observa-
tions resulted in ULs.

Consequently, 1ES 2344+514 seems to be, within the limits
of the AGILE-GRID andFermi-LAT sensitivities, a rather sta-
ble and weak source in the HE gamma-ray band over long time
scales. Hence, archival data should yield a fairly good estimate
of the actual flux during this MW campaign. We therefore use
the spectral information from 1FGL on a quasi-simultaneousba-
sis for SED modelling (see Sect. 4.2).

The LAT high energy analysis revealed nine events with en-
ergies in excess of 100 GeV within the first 44 months of op-
eration from 1ES 2344+514, the highest energy photon having
an energy of nearly 500 GeV (see Table 2). We compare these
with the number of events detected from four similar sources
(see Sect. 2.3) in Table A.3. An investigation of the distribution
of event energies is strongly limited by the small event statis-
tics, but judging from Fig. A.1, most of them are clustered for
Mrk 421 at 100 GeV, whereas the distribution seems to be shifted
to ∼150 GeV for Mrk 501 and∼200 GeV for 1ES 2344+514. If
real, distinct HE flares may be responsible for most of the events
> 100 GeV detected from Mrk 501 and 1ES 2344+514 (we note
that the events are not clustered in time), in contrast to Mrk421
for which the distribution indicates a constantly high flux at HE.

The number of events should be correlated directly with the
source luminosity. Determining the latter at 60 GeV (from their
respective photon fluxes between 10 and 100 GeV in Nolan et al.
2012) and normalising the photon counts to the distance of
1ES 2344+514, a linear fit for the five sources yields the ex-
pected correlation with a slope of(0.99± 0.24) counts per
1043 erg s−1 (not shown). This indicates that the 2FGL fluxes
are a suitable representation of the average source behaviour.
The goodness of the linear fit is rather low though, having a
χ2/d.o.f . = 7.4/3, but is preferred by a logarithmic likelihood

Table 2. Fermi-LAT detected events with an energy> 100 GeV
within the first 44 months of operation from the direction of
1ES 2344+514 (R.A. 356.77◦, Dec. 51.71◦).

MJD Energya R.A.b Dec.c Sep.d

[GeV] [◦] [ ◦] [arcmin]
54879.961 221 356.59 51.80 9
54992.961 174 356.79 51.61 6
55041.439 283 356.73 51.75 3
55358.826 495 356.86 51.63 6
55553.247 201 357.01 51.60 10
55896.009 114 356.79 51.68 2
55702.733 207 356.97 51.63 9
55936.262 107 356.79 51.91 11
55948.736 231 356.74 51.73 2

Notes. (a) Energy,(b) right ascension (J2000) and(c) declination (J2000)
of the event.(d) Angular separation between the event direction and
1ES 2344+514.

ratio test with 98.9 % over a fit with a constant (χ2/d.o.f . =
25.5/4). This is a consequence of the comparably low number
of counts from 1ES 1959+650, which may arise from the flat-
ter spectral index at HE, and the high number of events detected
from 1ES 2344+514 (which should be 2 – 3 according to its lu-
minosity). Considering the similar luminosities of the sources,
the reason should be a higher flaring duty cycle rather than a
higher long-term average flux of the source, which would be in
line with the interpretation of the observed shift in event energy
distributions. Alternatively, the event counts may also bearti-
ficially increased by false identification of Galactic foreground
events of 1ES 2344+514, being located at a low Galactic lati-
tude of−9.9◦. However, applying the same analysis to two re-
gions containing no HE source at the same Galactic latitude as
1ES 2344+514, but 2.5◦ away from the object, did not result in
the detection of any event with energy> 100 GeV.

The weakness of this investigation is the low statistical ba-
sis of only five sources. Additionally, we note that the events
above 100 GeV have been extracted from 44 months of observa-
tions, whereas the luminosities were determined from 2FGL (24
months). These arguments render our conclusions rather specu-
lative. A catalogue of sources with events> 100 GeV based on
longer observation times is needed to conduct a more reliable
study.

3.3. X-Rays

Swift XRT detected significant variability (see Fig. 5 and
Table A.1). The 2 – 10 keV flux increased by∼ 50 % within two
days, followed by a slow decline nearly halving the flux during
eight days. Thereafter, the flux rose again, showing an irregular
behaviour, and eventually reached the highest flux during these
observations on the last day. The quicklookSwiftXRT intra-day
light curves (from theSwiftMonitoring Program10) did not show
significant intra-day variability during the MW campaign.

Compared to previous observations, also the soft X-ray
flux was detected at very low levels during this campaign. In
Acciari et al. (2011b), the lowest reported X-ray fluxes from
2 – 10 keV bySwift XRT and RXTE PCA were (9.6± 0.6) ·
10−12 erg cm−2 s−1 and (9.5± 2.6) · 10−12 erg cm−2 s−1, respec-
tively. The lowest flux in our sample, which was also used to
derive the “low state” SED (see Sect. 4.2), is more than 15 % be-
low that level ((7.9± 0.5) · 10−12 erg cm−2 s−1, see Table A.1).

10 see http://www.swift.psu.edu/monitoring/
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Fig. 6. Swift XRT spectral index (determined from a simple
power law fit between 0.3 and 10 keV) versus the integral flux
for 1ES 2344+514 for this campaign. The dashed line shows a
fit with a constant, whereas the solid line denotes a linear fit.

The source is rather often found in such low flux states be-
tween 2 and 10 keV, as further historical measurements show
(e.g. 8.4 · 10−12 erg cm−2 s−1 measured byBeppoSAXin 1998,
9 · 10−12 erg cm−2 s−1 by Swift in 2005; Giommi et al. 2000;
Tramacere et al. 2007), but not below the lowest flux reported
here.

The XRT spectral index (determined from a simple power
law fit between 0.3 and 10 keV) measured during this campaign
varied between 1.76±0.13 and 2.16±0.12, a smaller dynamical
range compared to previous observations at similar energies (see
e.g. Giommi et al. 2000; Acciari et al. 2011b). Despite not be-
ing significantly variable over time (χ2/d.o.f . = 10.8/18), there
seems to be a dependence of the index on the integral flux, see
Fig. 6, which is produced mainly by the highest measured flux
point. A linear fit results in a slope of− (2.77± 1.11) · 10−2 per
10−12 erg cm−2 s−1 with a goodness of fit of 99.9 % (χ2/d.o.f . =
4.2/17), whereas a fit with a constant has aχ2/d.o.f . = 10.8/18
(90.5 %). A logarithmic likelihood ratio test prefers the linear
fit with 97.9 %. More meaningful in terms of theoretical mod-
els would be to investigate a correlation between the spectral
index and the peak position, but because the latter cannot bede-
termined due to lack of significantly curved spectra, the integral
flux was used. A negative correlation between flux and spectral
index is expected e.g. for an increase of the maximum electron
energy in SSC models (e.g. Mastichiadis & Kirk 1997).

The evolution of the hardness ratio (defined here as the ra-
tio of event counts between 2 – 10 keV and 0.2 – 1 keV), another
measure of the spectral shape, cannot be described satisfacto-
rily by a constant fit (χ2/d.o.f . = 31.6/18, see Fig. 5). The
detected variability allows to test independently if the spec-
tral shape changed considerably with the flux during the ob-
servations. Especially during high flux states, the hardness ra-
tio seemed to increase (judging from Fig. 5), which means that
the flux rose stronger at higher energies than at lower ones.
A weak correlation (χ2/d.o.f . = 12.6/17 for a linear depen-
dence) between the flux and the hardness ratio is visible (see
Fig. 7). A constant fit yields aχ2/d.o.f . of 31.6/18. Therefore,
according to the logarithmic likelihood ratio test, the linear fit
is preferred with a confidence of 98.9 %. This finding repre-
sents an independent confirmation of the correlation between
the spectral index and the flux in Fig. 6 and can be interpreted
as the common “harder spectrum when brighter” trend during a
blazar flare (see e.g. Pian et al. 1998). From earlier observations,
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Fig. 7. Swift XRT hardness ratio versus integral flux for
1ES 2344+514 for this campaign. The dashed line shows a fit
with a constant, whereas the solid line denotes a linear fit.
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1ES 2344+514 for the time of the flare (MJD 54757– 54769).
The blue arrows give the evolution in time.

1ES 2344+514 is known to follow such a trend (Giommi et al.
2000; Acciari et al. 2011b).

Using only the data during the flare, i.e. from MJD 54757
to 54769, a hint for a counter-clockwise evolution seems to be
apparent in the hardness ratio – flux plane (Fig. 8). Kirk et al.
(1998) explain such a behaviour in a model where the flare arises
from a shock front accelerating electrons within a relativistic jet.
A counter-clockwise evolution is visible when the observations
happen close to the maximum emission frequency of the elec-
trons, where the acceleration and cooling time scales are com-
parable. In this case, the electrons will not be acceleratedto the
highest energies and no related flare at gamma-ray energies is
expected. This is in agreement with our simultaneous gamma-
ray observations, although our VHE light curve does not exclude
the presence of a flare of similar amplitude to have appeared at
gamma rays at high confidence. An additional hint for similar
cooling and acceleration time scales being responsible forthe
flare is given by the constant spectral index (χ2/d.o.f . of 1.4/10)
during the high flux measurements.

Having found a rather hard spectral index down to∼ 1.8 in
the XRT band, the BAT 66 months data have been searched for
hints of a signal. Indeed, during the time of XRT observations
there are indications of a positive flux for several consecutive
days, though insignificant due to limited statistics. Therefore,
the daily BAT light curve was re-binned to different time scales
(see Sect. 2.4). As can be seen from Fig. 5, variability may be
present in the weekly binned data (χ2/d.o.f . = 30.3/22 for a
constant flux). The weekly high flux point during the XRT mea-
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surements at MJD 54772.5 has a significance of 4.9. However,
further analysis shows that this anomalous high flux can be at-
tributed to an artifact of the BAT coded-mask imaging and hence
is not believed to be due to any real increase in the emission of
1ES 2344+514. For the monthly binned points, the probability
of variability increases (constant flux fit:χ2/d.o.f . = 12.8/4).
The quarterly and yearly results will be discussed in Sect. 4.1 in
the context of the long-term behaviour of the source.

3.4. UV and Optical

KVA found the source on a modest overall flux density level
of ∼ 4.2 mJy when compared to earlier and later KVA measure-
ments (see also Fig. 14). The host galaxy contribution has not
been subtracted for the investigation of the light curves. No sig-
nificant variability throughout the entire observation period is
found in the R-band. The data points are consistent with a con-
stant flux density (χ2/d.o.f . = 13.1/29). The CrAO points are
noisier than the KVA points, but all of them are compatible with
the KVA data within less than two error bars. Applying a con-
stant fit to the combined KVA+CrAO measurements does not
provide evidence for variability (χ2/d.o.f . = 35.8/36). The prob-
ability for a constant flux slightly increases for all light curves
when subtracting the host galaxy contribution.SwiftUVOT also
did not find significant variability at any of the measured fre-
quencies (see Fig. 5 and Table A.4).

3.5. Radio Bands

The results of the measurements at radio frequencies have tobe
discussed in the light of the different observation techniques.
The VLBA interferometer is not sensitive to the steep spec-
trum extended emission from the large scale jet (expected spec-
tral index: ∼ 0.5) but observes directly the flat spectrum of
the parsec-scale structure, whereas the single-dish telescopes
Effelsberg and OVRO measure the whole jet. As the brightness
of the extended components decreases at higher frequencies,
the parsec-scale spectrum becomes prominent and the single-
dish spectrum becomes flatter with increasing frequency. This
is obvious from Fig. 9, comparing the quasi-simultaneous (sep-
arated by∼ five days) spectra of Effelsberg+OVRO and VLBA.
Clearly the VLBA integrated spectrum is much flatter than the
Effelsberg+OVRO spectrum and can be well fitted by a sim-
ple power law of the formS = ν−α, whereS is the flux den-
sity. The resulting spectral indexα is 0.10± 0.04. On the con-
trary, a simple power law (α = 0.42± 0.01) can not describe
the Effelsberg+OVRO spectrum sufficiently11, judging from the
residuals in Fig. 9. A broken power law is clearly preferred,
whose fit applied to the Effelsberg+OVRO data results in the fol-
lowing parameters:Ebreak= (5.6± 1.0) GHz,α1 = 0.49± 0.03,
α2 = 0.34± 0.05 and a normalisation of(0.153± 0.004)Jy at
10 GHz.α1 being close to 0.5 indicates that the emission is dom-
inated by the large scale jet.

3.5.1. Single-Dish Observations

Single-dish radio observations were conducted from 2.64 GHz
(Effelsberg) to 228.39GHz (IRAM). Since IRAM did not de-
tect the source significantly, 3σ ULs were calculated. The mea-
surements conducted by Effelsberg show significant variability
(although of small amplitude) throughout the observations, as

11 Note that all error bars shown in Fig. 9 contain the systematic con-
tribution, because of whichχ2 goodness of fits cannot be given.
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can be seen in the top panel of Fig. 5. The flux density was
rising first towards MJD 54779.0 at all frequencies (observa-
tions at 2.64 GHz were not conducted that day) and declined
slowly afterwards. RATAN-600 found the source prior to the
Effelsberg observations on a flux density level consistent with
the first Effelsberg measurements. The OVRO light curve shows
no clear evidence for variability, having a probability of 8.7 %
(χ2/d.o.f . = 33.9/24) for a constant flux density. When omitting
the outlier around MJD 54870, the probability for a constantflux
density is rising to 13.6 %. 1ES 2344+514 was too faint to be
detected by Metsähovi during the campaign and for 07/10/2008
(MJD 54746), an upper limit on the flux density at 37 GHz of
< 0.33 Jy with S/N > 4 was calculated. The source was de-
tected by Metsähovi three months earlier at a flux density level
of (0.38± 0.09) Jy, which is consistent with the derived upper
limit.

To understand the radio behaviour of AGNs, they have to be
studied over long periods of time, considering the rather long
variability time scales compared to e.g. X-rays. 1ES 2344+514
has been observed in the past on a regular basis at radio fre-
quencies. The combined quasi-simultaneous (time difference
< 14 days) radio spectra from Effelsberg, Metsähovi, OVRO and
RATAN-600 from 2007 through 2009 are shown in Fig. 10 (for a
time-resolved version see Fig. A.2). IRAM ULs, where the low-
est flux density UL is 0.96 Jy, are not shown for clarity. At fre-
quencies below∼ 20 GHz the source shows steep radio spectra
while above this frequency, the spectra become flat or inverted.
This is a consequence of high amplitude variability of the mm
radio emission, originating from a more compact region thanthe
one dominating the cm-band radio spectrum. These characteris-
tics are in accordance with the model of Angelakis et al. (2012)
who demonstrated that the radio spectra of most of the AGNs
under study can be described well by a simple two component
system consisting of a power-law quiescent spectrum (attributed
to e.g. the optically thin diffuse emission of a large scale jet) and
a convex synchrotron self-absorbed spectrum (resulting from a
recent outburst within the compact region).
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Fig. 10. Radio spectra of 1ES 2344+514 taken by Effelsberg,
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connect the data points. The legend contains the MJD range
of the combined spectra. We recall that the detection limit of
Metsähovi at 37 GHz under optimal conditions is∼ 0.2 Jy. See
also Fig. A.2.

Such an outburst may be explained in the framework of the
model of Marscher & Gear (1985) where the emission is com-
ing from a shock propagating in an adiabatic relativistic jet.
According to shock models, the feature should move outwards
within the jet, i.e. from high to low frequencies. Outburstsare
present only at times outside of the principal MW campaign, the
most significant one seen by Metsähovi around MJD 55039 hav-
ing a doubling time of. 28 days and a decline to the original
flux density value of. 15 days. IRAM observations two days
later provided only unconstraining flux density ULs (< 1.74 Jy
at 86.24 GHz and< 1.95 Jy at 142.33GHz), and the quasi-
contemporaneous OVRO points, from the flaring day as well
as 4, 12 or 15 days after the flare, did not show a significantly
higher flux density. However, the flare may have been missed
due to the comparably sparse sampling during these days. A fit
with a constant to the OVRO data from MJD 55024 until MJD
55054 does not yield significant variability (χ2/d.o.f . = 4.9/8).
Hence no conclusions on the validity of the shock scenario can
be drawn from this data. However, the time scale of the flare it-
self is interesting. There are very few examples of such fastvari-
ability at 37 GHz for HBLs, e.g. Mrk 421 (Lichti et al. 2008).
That is mainly due to their faintness and consequently low de-
tection rate at this frequency. Nevertheless some of these objects
are detected at clearly higher flux density values in betweenpe-
riods of non-detections, giving a hint for fast variability(see e.g.
Nieppola et al. 2007).

Figure 11 shows the light curve measured by Effelsberg in
the context of the F-GAMMA program from beginning of 2007
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Fig. 11. Light curve of 1ES 2344+514 measured by Effelsberg.
The solid lines connect the points for illustrative purposes. The
MW campaign duration is visualised by the grey box.

until mid of 2009 (MJD 54155 – 54952). Apart from an overall
higher flux density state especially at high frequencies from the
start of the observations until mid of 2008 (∼MJD 54600), sev-
eral structures are visible, which reveal an ambivalent correla-
tion during the variability. On the one hand, there are features
where only near-by frequency bands showed the same trends
with gradually decreasing tendency (MJDs 54239, 54486 and
∼ 54935). On the other hand, structures may have been present at
all measured bands with about the same strength (MJDs∼ 54547
and∼ 54779). The different features are possibly attributed to
re-acceleration of particles within the jet. The occurrence of an
equal amplitude at all frequencies or gradually decreasingampli-
tude with frequency can be explained in that context by different
physical conditions within the jet, e.g. a change of the magnetic
field or the particle density. Alternatively, the sparse sampling
in combination with frequency-dependent time lags may explain
some of the observed features.

The probability that the flux density seen by OVRO was
constant during the second Effelsberg high state, between MJD
54761 and 54796, is rather low (χ2/d.o.f . = 21.2/12, i.e.
∼ 4.8 %), due to the first measurement in this time period (see
also Fig. 5). Neglecting this point, theχ2/d.o.f . = 2.8/11, giv-
ing highly significant evidence for constancy. The flux density
rose from the first point within two days by∼ 16% and re-
mained constant afterwards. This indicates that the peak seen
in the Effelsberg light curve around MJD 54779 was indeed a
broad high flux density plateau. From the OVRO variability time
scale, the Doppler factor can be estimated to be> 3.4 using
Eqs. (1) and (2) in Lähteenmäki & Valtaoja (1999). It should be
noted that this estimation method has not been tested for faint
radio sources like TeV BL Lacs, and that the estimation of the
flare rise time is based on two data points only. Therefore, the
value is not representative, but also not in disagreement with the
quasi-simultaneous results from the high state SED modelling
(see Sect. 4.2).

3.5.2. Interferometric Observations

The VLBA image of 1ES 2344+514 (Fig. 12) reveals a core-
dominated structure with a smooth jet extending in South-East
direction. At the distance of 1ES 2344+514 (z = 0.044), the
linear scale of the images is 0.9 pc/mas. The integrated parsec-
scale radio spectrum is flat, which is typical for blazars. The
VLBA data can be used to estimate the radio core size (the com-
pact feature at the North-Western end of the jet in Fig. 12) at
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Fig. 12. Naturally weighted CLEAN image of 1ES 2344+514
obtained with the VLBA on 23/10/2008 (MJD 54762) at
15.4 GHz. Green circles mark positions and sizes of model com-
ponents listed in the Table A.5 from North-West to South-East:
the Core, C 3, C 2, C 1. 1 mas corresponds to 0.9 pc in abso-
lute length. Contour image parameters: peak= 0.11 Jy/beam,
beam = 0.98 × 0.58 mas at PA= −42.2◦, first contour =
0.50 mJy/beam, contour level increase factor= 2. The naturally
weighted beam is shown at the lower left corner of the image.

Table 3. Core size as a function of frequencyν. Errors are given
with 1σ.

ν Flux Density Size Resolution Limit
[GHz] [Jy] [mas] [mas]
4.6 0.094± 0.006 < 0.13 0.13
5.0 0.091± 0.005 0.16± 0.09 0.10
8.1 0.094± 0.005 0.09± 0.06 0.06
8.4 0.096± 0.005 0.14± 0.05 0.06

15.4 0.102± 0.007 0.07± 0.04 0.05
23.8 0.076± 0.005 0.03± 0.02 0.03
43.2 0.120± 0.022 < 0.06 0.06

each frequency (see Table 3) by modelling it with a circular
Gaussian emission component. At the highest and lowest fre-
quency the core size can only be constrained to< 0.13 mas,
i.e. R . 1017 cm, while at the other frequencies the core is re-
solved. The limiting resolution and component size uncertainties
were estimated following Fomalont (1999), Lobanov (2005) and
Kovalev et al. (2005).

The source is highly core dominated at parsec scales.
Specifically, on the basis of modelling of VLBI data we can es-
timate that the emission from the core region at 5 GHz accounts
for ∼65 % of the total VLBI flux density progressively increas-
ing up to∼ 75 % at 23.8 GHz. Fast variations with rms values
typically well below 10 % in total flux density have been mea-
sured at cm wavelengths in a large sample of flat-spectrum com-
pact radio sources (e.g., Kraus et al. 2003; Lovell et al. 2008)

– most probably due to scintillation in the Galactic interstellar
medium.

The flat parsec-scale radio spectrum showing no clear signs
of the synchrotron self-absorption turnover at low frequencies
(see Fig. 9) may be explained as optically thin synchrotron emis-
sion from an ensemble of electrons having a very hard energy
spectrumN(E) ∝ E−X (Sokolovsky et al. 2010b). However, the
more likely explanation is that the flat spectrum is a result of op-
tically thick synchrotron emission from a Blandford & Königl
(1979) type jet. This explanation is supported by the observed
core size increase at lower frequencies (Unwin et al. 1994, see
Table 3) and the difference in separation between the compo-
nent C 3 and the core observed at 15.4 (Piner & Edwards 2004)
and 43.2 GHz (Piner et al. 2010). Together, these points agree
with the standard interpretation of the parsec-scale radiocore in
1ES 2344+514 as a surface in a continuous Blandford & Königl
(1979) jet at which the optical depth at a given frequencyν is
τν ≃ 1 (Lobanov 1998; Sokolovsky et al. 2011). This is a chal-
lenge to most of the alternative interpretations of the corephysics
discussed by Marscher (2006, 2008), at least for the frequency
range covered by our VLBA observations.

Using multi-epoch MOJAVE results (see Table A.5), the av-
erage core brightness temperature at 15.4 GHz can be deter-
mined asTb ≈ 8 · 1010 K. While being rather smooth, the jet of
1ES 2344+514 can still be divided into several individual emis-
sion components that we fit with circular or elliptical Gaussian
models. Consistency of their positions, fluxes and sizes among
MOJAVE epochs suggests that these components are real sta-
ble structures in the jet, not an artefact of representationof
a smooth continuous jet with discrete Gaussian components.
Analysis of the 15.4 GHz MOJAVE monitoring shows no sig-
nificant motion of the jet components over the entire observ-
ing period of eleven years. Even across the long eight-year time
gap, the positional changes of the fitted component positions
are smaller than their overall scatter in the post-2008 period.
Parameters of the jet components and results of the formal linear
fits to their trajectories are presented in Table A.5. Among the
jet components, C 3 is the brightest and smallest one, located
∼ 0.6 mas from the core. C 3 provides the strongest limits on
the apparent jet speedvapp of (−5± 7) µas yr−1 corresponding
to βapp = vapp/c = − (0.01± 0.02). It can be clearly identified
with the component C 3 described in Piner & Edwards (2004)
and Piner et al. (2010), where theβapp values derived for C 3
were given as−0.19± 0.40 and 0.10± 0.02, respectively.

That no superluminal motion is observed in the jet of
1ES 2344+514 is in line with the previous findings that this
source and a number of other TeV (Piner & Edwards 2004;
Piner et al. 2010) and non-TeV (Karouzos et al. 2012) BL Lacs
show much slower apparent jet speeds compared to those typi-
cally found in compact extragalactic radio sources (Listeret al.
2009b). Note however, that Piner et al. (2010) report the de-
tection of significant component motion in 1ES 2344+514 with
speeds inconsistent with the results presented above. The pos-
sible sources of this discrepancy include (i) the smaller number
of observational epochs available to Piner et al. (2010) and(ii)
the fact that the authors combine component positions measured
at different frequencies without explicitly taking the effect of
a frequency-dependent core shift into account (Lobanov 1998;
Sokolovsky et al. 2011; Hada et al. 2011), which may introduce
systematic errors in the positions of the components.

There is a possibility that the observed jet component mo-
tion is not indicative of the actual jet flow speed in this source.
However, that assumption is not supported by the fact that the
core brightness temperature is well below the inverse Compton
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Fig. 13. Integral flux measured bySwift XRT from 2 – 10 keV
versus the flux density measured by OVRO for data pairs with
a time difference of< 0.9 days. A constant fit is represented by
the dashed line, the solid line shows the result of a linear fit.

limit ∼1012 K (Kellermann & Pauliny-Toth 1969; Kovalev et al.
2005). The rather low brightness temperature of the core indi-
cates that the radio emitting plasma in the jet is probably affected
by only moderate relativistic beaming.

4. Discussion

4.1. Cross-Band Correlations and Variability Studies

Correlated variability at different energy bands or lack of such
provides important information on the emission mechanismsand
locations. During the MW campaign, significant variabilitywas
only present in the low frequency radio and X-ray regime. The
small and short flux density rise at the beginning of the OVRO
measurements was accompanied by an XRT flux declining from
the flare peak down to∼75 %, suggesting an anti-correlation be-
tween these two frequency bands. Mathematically, a linear de-
pendence (probability of 45.2 %,χ2/d.o.f . = 4.7/5) is clearly
preferred above a constant one (logarithmic likelihood ratio test
probability in favour of the linear fit is 98.9 %), see Fig. 13.Any
possible correlation is, however, dominated by the point with
the lowest flux density, hence the OVRO – XRT comparison is
inconclusive.

Since the MAGIC light curve points are only marginally sig-
nificant, the feasibility of investigating correlations with other
bands is limited. It should however be noted that the daily flux
point with the highest significance in the MAGIC light curve
appeared only∼ two days after the highestSwift XRT flux had
been detected. Since this high X-ray flux was accompanied by
a strong hardening of the spectral index, this can be interpreted
as an injection of fresh electrons into the emission region,which
should cause a higher flux also at gamma-ray energies.

Considering time scales beyond the duration of this MW
campaign, flux (density) changes in the radio, optical and X-
ray regime were clearly detected for 1ES 2344+514, as can be
seen from the first four light curves in Fig. 14. A fit with a con-
stant results inχ2/d.o.f . = 3929.6/317 for OVRO,χ2/d.o.f . =
2058.3/437 for KVA andχ2/d.o.f . = 491.8/66 for Swift XRT.
Also the distribution histograms of flux (density) over error
(Fig. A.3) show a clear deviation from a Gaussian function,
where the latter would be expected for uniformly sampled light
curves dominated by statistical fluctuations. The strong flare
measured by XRT around MJD 54442.2 cannot be unambigu-
ously identified in the Effelsberg or KVA light curves. In the
KVA light curve, a slightly higher flux was seen∼ 5.3 days

after the large flare and∼ 5.7 days after a smaller XRT flare
(MJD 54466.5), suggestive of a time lag of the optical emission
with respect to the X-rays. Also the Effelsberg measurements
revealed two significant peaks (at different frequencies, though)
in that time period (∼MJDs 54486 and 54547). But on a signifi-
cant correlation of these high states with the XRT flares can only
be speculated due to the incomplete sampling of theSwiftXRT,
KVA and Effelsberg light curves.

On time scales of years, the good sampling allows us to per-
form a search for correlations between the OVRO and KVA data.
In order to exclude a bias of the result caused by measurement
noise, OVRO data with an error> 0.02 Jy (∼15 % of the data)
were excluded from this analysis. Using the discrete correla-
tion function (DCF) as defined in Edelson & Krolik (1988), we
searched for possible correlations for lags up to±100 days be-
tween both data sets. Two such searches were performed, one
in which the raw light curves were used, and one in which we
searched for correlations after first subtracting off a low-pass fil-
tered version of the data in order to remove long-term trends
which might influence the calculation of the DCF. The analysis
did not yield a significant correlation.

Investigating the light curves ofRXTEASM12, Swift BAT
andINTEGRALISGRI13 on time scales of one day, some outliers
become apparent. These are expected from a statistical point of
view, and all data points but one do not have a signal/error sig-
nificantly offset from their corresponding Gaussian distribution
(see Fig. A.4). This point, having a signal to noise ratio of∼ 5,
was measured by ASM at MJD 54468.0, 1.5 days after an in-
creased flux seen bySwiftXRT and∼ 3.8 days before the higher
KVA state (see above). If real, it indicates that XRT detected the
onset of a flare potentially even higher than the large one around
MJD 54442.2, which preceded a small flare in the R-band by
∼ 3 – 4 days. The sparse sampling does not allow to draw further
conclusions on the nature or origin of the flare.

A fit with a constant to the daily light curves is ruled
out on high statistical basis for ASM and BAT (χ2/d.o.f . =
4215.6/3007 and 2364.1/1733, respectively), though not for
ISGRI (χ2/d.o.f . = 228.8/214). The Gaussian fits to the sig-
nal/error distributions reveal a significant shift of the mean
value to positive values for BAT and ISGRI, but not for ASM
(0.18± 0.03, 0.11± 0.07 and− (0.07± 0.02) for BAT, ISGRI
and ASM, respectively). Note, however, that a Gaussian statis-
tical behaviour is not expected for ASM due to coded mask ob-
servations. In the case of BAT, Gaussian statistics is stillapplica-
ble despite applying the coded mask technique due to the large
number of individual detector elements. Consequently, theBAT
light curve indicates significant variability of the sourceat hard
X-rays.

The large flare detected by XRT on MJD 54442.2 is not
clearly visible in the daily ASM or BAT light curve; ISGRI did
not observe at that time. 1ES 2344+514 seems to be too faint at
X-rays to be detected on daily time scales by these two instru-
ments. Therefore, the light curves of ASM, BAT and ISGRI have
been re-binned in the same way as the simultaneous BAT data

12 RXTEASM data were obtained from NASA GSFC’s archive. In
the generation of the light curve only single-dwell ASM datawere used
in which theχ2

red was< 1.3. Slight variations in the signal to noise ra-
tio over the full ASM light curve are due to episodes where thesource
position was less well covered by the individual cameras of the ASM.
Due to a strongly reduced instrument sensitivity resultingfrom degra-
dation of the detectors towards the end of the mission, no data since
01/01/2011 have been used.

13 Data taken from HEAVENS (Walter et al. 2010,
http://www.isdc.unige.ch/heavens/).
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(see Sect. 2.4). As an example, the weekly results are shown in
Figs. 14 and A.3. From the signal/error distribution histograms,
no significant flares outside the Gaussian distribution14 are ap-
parent for any binning and instrument except for the 1-week BAT
point at MJD 54772.5 already discussed in Sect. 3.3. The large
XRT flare at MJD 54442.2 is still not clearly present in any of
the light curves for any binning.

The trend of a positive Gaussian mean increases with
larger time bins for BAT, finally leading to the detection of
1ES 2344+514 as reported in the 58-Month Catalog. The light
curves of ASM and BAT are not consistent with a constant flux
up to quarterly binning, though the corresponding probabilities
are rising with increasing time bin size. For a yearly binning, a
fit with a constant yieldsχ2/d.o.f . = 14.9/7, χ2/d.o.f . = 5.1/5
andχ2/d.o.f . = 8.2/5 for ASM, BAT and ISGRI, respectively.

The arrival times of the nine photons with energy> 100 GeV
detected byFermi-LAT within the first 44 months are also shown
in Fig. 14. No exceptional behaviour is visible in the light curves
of the other energy bands at these times.

At the time of the Metsähovi flare (MJD 55039, see
Sect. 3.5.1), optical R-band monitoring data are also available.
1ES 2344+514 was densely covered between MJDs 54994 and
55088 with detections on daily basis from seven days before the
Metsähovi flare until three days after. The best, though still in-
significant, hint of a higher flux density in that period is given at
MJDs 55040 and 55041. Either there was no correlation present
between the R-band and 37 GHz during this flare (as the missing
long-term OVRO – KVA correlation is also suggesting), or the
optical monitoring missed it. A missing correlation would hint
on different flaring mechanisms or, more likely, spatially sepa-
rated emission regions. In the latter case, a time delay between
the radio and optical emission would be expected, which may be
more firmly determined based on continuous monitoring in the
future. Quite interestingly, two of theFermi-LAT events with
energies> 100 GeV were detected 46 days before and< 2 days
after the Metsähovi flare, respectively (see Table 2). On a cor-
relation can only be speculated though, taking into accountthat
the exact time of the flare maximum can be determined neither
from the Metsähovi nor the OVRO or KVA monitoring data.
Moreover, the timing of the events may be purely coincidental.

In general, the present monitoring programs at various wave-
lengths represent a major progress towards the understanding of
blazar phenomena. Nevertheless, more efforts seem necessary,
increasing the sampling density and time basis, and especially
extending the monitored energy range to the X-ray and VHE
regime.

4.2. Spectral Energy Distribution Modelling

4.2.1. Simultaneity

Since the gamma-ray detections were only marginally signifi-
cant, (quasi-)simultaneous data sets for constructing SEDs are
composed according to the X-ray flux state. We define a “low”
and “high” X-ray flux SED, choosing MJDs 54760.9 (high) and
54768.8 (low). The exact observation times of the different in-
struments around these data sets are given in Table 4.

The two data sets are too close in time to derive individ-
ual gamma-ray results. The corresponding ULs of AGILE-GRID

14 A closer look at the light curves reveals several extended peaks with
rather symmetrical rise and fall times in the ASM and BAT datafor
different binnings, but these structures match quite well the minima of
the solar angle to ASM and can therefore most probably not be ascribed
to 1ES 2344+514.

Table 4. Observing intervals of the SED data sets.

Data Set Instrument Observation Time
[MJD]

1ES 2344+514 low

Effelsberg 54778.947 – 54778.950
OVRO 54769.077
Swift 54768.806 – 54768.948
AGILE 54770.500 – 54800.500a

Fermi-LAT 54759.941 – 54800.897a

MAGIC 54759.941 – 54800.897

1ES 2344+514 high

Effelsberg 54756.960 – 54756.970
OVRO 54761.095
VLBA 54761.96 – 54762.42
KVA 54761.718
Swift 54760.899 – 54760.983
AGILE 54770.500 – 54800.500a

Fermi-LAT 54759.941 – 54800.897a

MAGIC 54759.941 – 54800.897

Notes. (a) No detection; 95 % c.l. ULs calculated.

and Fermi-LAT as well as the MAGIC spectrum were aver-
aged over the entire respective observation periods and used for
the modelling of both SEDs. Note that no significant variability
could be found in any gamma-ray band (see Sects. 3.1,3.2), the
detection of which would exclude averaging the measurements.

The 66-month BAT spectrum can be regarded as a mea-
sure of the average low flux of the source, since no significant
flares are present in the BAT light curve from daily to yearly
scales apart from the artificially high weekly flux point at MJD
54772.5. Taking into account that the low and high state XRT
spectra have been measured in a slightly lower and higher flux
state than the long-term average (judging from Fig. 14), respec-
tively, the BAT spectrum may be considered as being quasi-
simultaneous to these spectra.

The variability time scale during the observations in the radio
regime is hard to assess and differs from band to band, but in
general large changes in flux are not expected on time scales of
∼ two weeks. Therefore, some radio measurements have been
included on a quasi-simultaneous basis.

For the chosen low and high state dates of 1ES 2344+514,
there were no simultaneous measurements by KVA. For the high
state, the result from the following night is used. Taking into
account that the KVA measurements do not show a hint of vari-
ability throughout more than three months of observations,this
procedure seems justified. On the other hand it should be noted
that the simultaneous optical – X-ray data pairs are very fewand
especially missing for high X-ray fluxes, hence a higher optical
flux during the XRT flare cannot be excluded.

4.2.2. Model Description

Two different leptonic SSC emission models have been applied
to the such defined quasi-simultaneous SEDs. The one-zone
model by Maraschi & Tavecchio (2003) describes the SED com-
pletely by nine parameters: the radiusR, Doppler factorδ and
magnetic fieldB of the emission region, which contains an elec-
tron distribution following a broken power law with indexn1 for
γmin < γ < γbreakand indexn2 for γbreak< γ < γmax with density
K at Lorentz factorγ = 1. γmin has been fixed to values of 1
and 4000, which represent the extreme cases of the lowest and
a very high realisation, visualising a large part of the reasonable
parameter range.
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In the second model (Weidinger & Spanier 2010), an elec-
tron distribution with densityK atγmin is being accelerated in a
zone with radiusRacc. The electrons are finally escaping the ac-
celeration region and enter a second region, i.e. the emission re-
gion, with radiusRem where no further acceleration takes place.
The magnetic fieldB and Doppler factorδ are the same for the
two regions. The resulting electron distribution as well asthe
spectral indices are derived self-consistently from the accelera-
tion and cooling processes and are not determined a priori.

4.2.3. Results

The 1ES 2344+514 SEDs compiled from this campaign are
shown in Fig. 15. The given simultaneous KVA and UVOT data
have been host-galaxy corrected where necessary as well as de-
reddened. Due to the strong host galaxy and the large uncertainty
in its flux, the V-, B- and U-band fluxes cannot be determined
with sufficient significance and hence are not shown. Since the
optical data given at ASDC are not host-galaxy corrected, they
have been omitted. The simultaneous XRT data were corrected
for Galactic absorption. MAGIC and Whipple data were EBL
de-absorbed using the model from Kneiske & Dole (2010), the
archival VERITAS data by the Franceschini et al. (2008) model.
The AGILE UL denotes the flux> 100 MeV, theFermi-LAT
1FGL ULs are given between 0.1 and 0.3 as well as 0.3 and
1 GeV. Note that the Metsähovi UL has a c.l. of 4σ and the
IRAM ones 3σ.

A comparison of our results to archival SED data reveals that
the source has been measured in one of the lowest flux states ever
obtained from X-ray to VHE gamma rays. At optical and radio
frequencies, the fluxes were at a modest level.

For comparison, we also include publishedFermi-LAT
1FGL points on a quasi-simultaneous basis, taking into account
that no significant variability is present also in 2FGL. Though all
points are consistent with a simple power law distribution,there
seems to have been a small jump between the LAT points at 6
and 60 GeV which is hard to describe with the applied models.
Either the 6 GeV point is rather low in flux or the 60 GeV point
comparably high. The latter point connects rather smoothlyto
the MAGIC spectrum from 2005 – 6 and the VERITAS points
from 2008, whereas putting more weight on the 6 GeV point
the MAGIC spectrum from this campaign seems to match bet-
ter the quasi-simultaneous LAT data. Since the highest energy
point is subject to a rather large statistical uncertainty (< 10
and< 20 events in 1FGL and 2FGL, respectively) and hence
prone to potential short-term flux variations, our modelling is
focusing on the 0.6 – 6 GeV points. In this context, the inconsis-
tency of theFermi-LAT spectrum with the VHE points reported
in Abdo et al. (2009b) is no longer evident using the MAGIC
points from this campaign, indicating that the VHE results de-
rived here are more representative of the average flux state of
1ES 2344+514.

The 66-month BAT spectrum is an adequate extrapolation of
the XRT high state from this campaign. The low state spectrum,
on the other hand, would require an increase of flux with rising
energy, which cannot be described with the SSC models applied
here. Therefore, the BAT spectrum has been considered for the
fit to the high state data set only.

Note that SSC models are in general not suited to describe
the low frequency (i.e. radio) emission. Photons of these ener-
gies are self-absorbed in the radiation field of the SSC emis-
sion region. The observed flux in the radio regime is probably
produced by cooled electrons from an outer region of the jet

which are unimportant for the modelling of the higher frequen-
cies (Maraschi & Tavecchio 2003).

Taking this into account, both models are in reasonable
agreement with the simultaneous data of 1ES 2344+514. The
quasi-simultaneous 1FGL points disfavour the one-zone model
fits having aγmin = 1. Clearly the fits described byγmin = 4000
are preferred, or in general values being closer to 4000. However,
also for the one-zone fits with highγmin, a softer spectral index in
the HE regime would improve the compatibility with the 1FGL
data.

The derived model parameters (see Table 5) are in good
agreement with typical values for HBLs. Onlyγmin seems
rather high for the one-zone model, as doesγmax for the low
state two-zone model. Considering the exceptional faintness of
1ES 2344+514 across several energy bands, this concordance
is not necessarily expected. Consequently, either the low flux
state detected in this campaign does (still) not represent the
“quiescent” state of the source, or the quiescent state model
parameters do not differ considerably from the already known
ones. The ULs on size and magnetic field strength in the dom-
inating radio emitting region derived from VLBA observations
(Sokolovsky et al. 2010a) do not contradict the parameters of the
blazar emission zone as given in Table 5.

Comparing the high and low state in terms of the one-zone
model, the latter is explained by a softer electron spectralindex
as well as a lowerγbreak andγmax. In the case of the two-zone
model, the magnetic field drops consistently accompanied by
a higherγmin, γbreak andγmax. The parameter changes of each
model are best explained by a change in the acceleration proper-
ties of the non-thermal electrons, i.e. the efficiency of the under-
lying Fermi processes drops or rises respectively (we recall that
γbreak is not computed self-consistently in case of the one-zone
model). This behaviour may be caused by the emitting volume
leaving a standing feature along the jet (see e.g. Marscher et al.
2008) or, more likely, due to the observation of two independent
blobs.

It is interesting to note that the luminosity of the inverse
Compton component of the low (i.e. low X-ray flux) state SED
exceeds the one of the high state SED for all applied mod-
els. Specifically in the case of the one-zone model, this makes
the bolometric luminositiesLbol of the two flux states com-
parable. Forγmin = 1 (4000),Lbol,low = 1044.7 (1044.6) and
Lbol,high = 1044.8 (1044.7) erg s−1, which is basically identical con-
sidering the uncertainties involved.

Due to the differences between the two model approaches
at sub-optical frequencies and in the hard X-ray to soft gamma-
ray band, it is in principle possible to distinguish betweenthe
validity of the models. The first frequency band is covered by
Planck, though no detection of the source has been reported in
The Early Release Compact Source Catalogue (Ade et al. 2011),
containing the results of the first ten months of operation.Swift
BAT, INTEGRALIBIS as well as AGILE-GRID andFermi-LAT
cover the second window, but are not sensitive enough to detect
the source during low flux states on short time scales. To ex-
clude one of these models, a more sensitive instrumentationthan
currently available is needed.

Within this campaign, a small shift between the synchrotron
peak in the high and low state may be present (see Fig. 15). A
peak estimate from the data has been obtained by fitting the opti-
cal and X-ray SED points by a parabolic power-law in apex form
(see e.g. Tramacere et al. 2007):

νFν = f0 · 10−b·(log10(ν/νpeak))2

erg cm−2 s−1 (2)
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Fig. 15. Simultaneous SEDs of 1ES 2344+514 as derived from this campaign (black, blue and red markers) together with monitoring
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whereνpeak is the frequency of the synchrotron peak. The result
is shown in Fig. 16. From the fit to the low state data (χ2/d.o.f . =
6.5/8), the peak energy is determined marginally significant as
(0.27± 0.24)keV. In the high state case, the goodness of fit is
higher (χ2/d.o.f . = 5.6/10), but the fit fails to determine the peak
energy ((2.8± 4.5) keV). Additionally, a parabolic power law is
not clearly preferred over a simple power law in both cases (log-
arithmic likelihood ratio of 79.5 % and 95.7 % for the low and
high state, respectively). Consequently the data are insufficient
to directly constrain changes of the peak energy. As determined
from the one-zoneγmin = 4000 (two-zone) modelling, the peak
shifted from∼ 0.15 keV to∼ 1.7 keV (∼0.13 keV to∼ 0.46 keV)
between the low and high flux state. All these values are far from
the extreme blazar characteristics 1ES 2344+514 has shown dur-
ing high X-ray flux states, which is expected due to the rather
small flux difference between the two states observed here.

4.3. Comparison with Archival Campaigns

We compare the model parameters obtained from this cam-
paign with three other previous MW data sets reported for
1ES 2344+514. The parameters are listed in Table 5.

4.3.1. Archival Campaign Description

In Albert et al. (2007b), a homogeneous one-zone SSC model
(Krawczynski et al. 2004) was applied to both a low and high
state of the source. The low state data consisted of simultaneous
measurements of MAGIC, KVA and an ASM UL taken between
08/2005 and 01/2006, whereBeppoSAXdata taken 06/1998 were
added as a low state X-ray spectral template. Data byBeppoSAX
and a simultaneous UL by Whipple were combined with an
archival Whipple high state spectrum to describe the high state15.
Consequently the simultaneous data set was not very constrain-
ing and the SED models rather speculative, as noted by the au-
thors.

Tavecchio et al. (2010) were using the results from the first
three months ofFermi-LAT observations and combined them
with archival, non-contemporaneous data of 1ES 2344+514
from the radio up to the VHE band16. They used the one-zone
SSC model also applied in this work.

15 We note that the Whipple high state fluxes had been adopted incor-
rectly in Albert et al. (2007b), leading to a softer spectrumwith overall
lower flux.

16 We note that the optical data used for the SED modelling had not
been host-galaxy corrected. Increasingγmin from 1 to∼ 8000 can com-
pensate for the missing correction.
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Table 5. Model parameters. See text or reference for an explanation of the models. The used data sets and their simultaneity are
discussed in the text.

Reference This Campaign Albert et al. (2007b) Tavecchio et al. (2010) Acciari et al. (2011b)
Model Reference (1) (2) (3) (1) (3)
Flux Level low high low high low highb . . . low high
B [G] 0.07 0.05 0.09 0.10 0.08 0.1 0.09 0.03
δ 20 26 29 8 15 25 13 20
Rem [1015 cm] 3 4 9 5 10 4 10
Racc [1013 cm] . . . . . . 8 13 . . . . . . . . . . . . . . .
Ka [105 cm−3] 4.5 1.9 0.2 0.1 ∼ 0.5 ∼ 0.4 0.3 ∼ 0.4
e1 2.3 2.5 2.3 2.2 2 2.5 2.3
e2 3.4 3.2 3.5 3.3 3.2 3.2 3.2
γmin 1 or 4000 1800 550 ∼ 2500 ∼ 1500 1 (8000)c ∼ 200
γbreak [104] 5 8 10 3 ∼ 15 1 ∼ 40 ∼ 50
γmax [106] 0.7 1.5 6.3 1.5 ∼ 0.8 ∼ 1.6 0.7 ∼ 2.0

Notes. (a) Note thatK is given for the acceleration region atγmin in Weidinger & Spanier (2010), whereas the value is defined for the emission
region atγmin = 1 for the other two models.(b) See footnote 15.(c) Fit has been performed on optical data not corrected for the host galaxy. See
also footnote 16.

References. (1) Maraschi & Tavecchio (2003); (2) Weidinger & Spanier (2010); (3) Krawczynski et al. (2004).
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A more recent campaign, also using the model of
Krawczynski et al. (2004), combined measurements by
VERITAS, RXTE PCA, Swift XRT and Swift UVOT from
10/2007 until 01/2008 (Acciari et al. 2011b). The low state SED
was modelled using the time-averaged VERITAS measurements
(excluding a large flare) and a representative moderate X-ray
flux 1-day spectrum by XRT and PCA, similar to the procedure
used in this campaign for the low state SED. Note however
that the MAGIC light curve from this campaign did not show
significant variability, opposite to the VERITAS measurements
even after the exclusion of the flare (Fvar = (34± 16) %).
The high state SED data set was built from the highest fluxes
measured by VERITAS andSwift XRT together with the
corresponding UVOT data. Though the gamma-ray and X-ray

flares seem to have been correlated, they were separated by
> 24 hours. Note that the flux doubling time scale of the VHE
and X-ray flare was also∼24 hours, thus the true simultaneous
fluxes could have been different by a factor of∼2. The model
predicted significantly higher, in the high state by∼one order of
magnitude, fluxes than the 1FGL points. Since these were taken
after the MW campaign, higher fluxes in the LAT range during
the observations indeed cannot be excluded, despite the rather
constant emission of the source for two years since the launch
of Fermi.

4.3.2. Model Parameter Comparison

While the model parameters are in general interdependent and
hence difficult to compare, we can more easily investigate gen-
eral trends. Note that the models shown in Albert et al. (2007b)
and Tavecchio et al. (2010) were not constrained by simulta-
neous measurements as well as partly affected by incorrectly
adopted data (see footnotes 15 and 16), thus the results have
to be taken with care. All models indicate a rather weak mag-
netic field and high Doppler factor, similar to values typically
found for HBLs (see e.g. Tavecchio et al. 2010). Variabilityis
not explained in a unique way. For instance, changes inB and
δ can occur, but do not have to. Variability mostly arises by
changes in the electron distributions, i.e. different spectral in-
dices or energy distributions. Particularly in the case of this cam-
paign, the spectral indices are harder in the high flux state.It
is interesting to note that the size of the emission region isof-
ten not changing between the different flux states presented in
Table 5. That can be explained within the standing shock sce-
nario, where variability would be caused by structural changes
due to variations of the flow (Tagliaferri et al. 2008). However,
this behaviour is not expected if the two states correspond to the
emission of one moving and expanding blob of electrons within
the jet (e.g. Atoyan & Aharonian 1999; Sikora et al. 2001) at
two different times. This argument does not apply in the case
of Albert et al. (2007b) though since the presented low and high
state are not causally connected but artificially constructed. For
Acciari et al. (2011b), another flare occurred between the high
and low state SEDs, giving evidence that there is no causal con-
nection. Moreover, the time differences between the two flux
states are, also in the case of this campaign, too long to allow
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both to be caused by the same emitting region, at least if the
emission region is visualised as a travelling and expanding(with
vexp∼ c) blob (which would expand by several orders of mag-
nitudes within one week). To allow for a causal connection be-
tween the high and low state, the emission region has to be ex-
ternally confined in some way (e.g. by magnetic fields).

In general, the parameters found in this campaign are in good
agreement with archival values. It should however be noted that
the range for some parameters is rather broad, due to the inter-
dependencies of the parameters and non-unique solutions ofthe
model fits. More data and more MW campaigns in different flux
states are needed to fully constrain the models and reduce the
allowed parameter ranges.

5. Summary and Conclusions

In this paper, the results from the first MW campaign on
1ES 2344+514 from the radio to the TeV band have been pre-
sented and discussed, also taking into account multi-band long-
term data. The MW observations took place from 10/2008 until
01/2009, where the∼ 40 day long core campaign was conducted
in October and November. The source was found at low to mod-
est flux states at radio and optical frequencies, whereas at X-
rays and gamma rays, the flux level was amongst the lowest ever
reported for 1ES 2344+514. Due to this faintness, HE observa-
tions did not result in a detection during the campaign, and the
time-averaged VHE detection was only marginally significant.
Nevertheless we were able to obtain a reliable VHE spectrum
due to the long observation time of∼ 20 hours, the good event
statistics and the source being a well-known VHE emitter.

The VHE analysis suggested a rather hard spectral index,
which, if real, would be opposite to the “harder when brighter”
trend found in general for HBLs. The flux was consistent with
constant during the campaign. At X-rays, a moderate flare was
detected with∼halving of the flux within several days. During
the flare, hints for a counter-clockwise behaviour in the hardness
ratio – integral flux plane were found, indicating that the flare
was caused by a shock front characterised by comparable cool-
ing and acceleration time scales. This finding was strengthened
by the constant spectral index during the flare. Taking into ac-
count all X-ray observations during the campaign, the spectral
index still did not show significant variability, though a potential
correlation between the X-ray index and the X-ray integral flux
was visible. The evolution of the hardness ratio with the integral
flux corroborated that “harder when brighter” trend, confirming
findings reported in the literature for 1ES 2344+514. No signif-
icant variability could be found at optical and UV frequencies.
From VLBA observations, the size of the radio core could be de-
termined or constrained at several frequencies, yielding values
of the order of 1017 cm. This is more than one order of magni-
tude above the size determined from SED modelling, indicating
a different origin of the radio and SSC emission.

1ES 2344+514 exhibited significant variability only at low
frequency radio and X-ray bands during the campaign. Due to
that as well as unfortunate sampling and technical problems, the
basis for cross-band correlations for the time of the MW cam-
paign is too short for a meaningful investigation. For a flareob-
served at the end of the core campaign, indications were found
suggesting it may have been caused by injection of fresh elec-
trons into the jet.

On time scales longer than this campaign, significant vari-
ability was evident for the radio, optical and X-ray regimes
whereas the high energy gamma-ray light curve from 2FGL was

consistent with being constant. In contrast to the low and con-
stant emission found byFermi-LAT, the events with energies
above 100 GeV detected from 1ES 2344+514 indicate that the
source may have a comparably high flaring duty cycle.

Different feature characteristics were found in the Effelsberg
light curve at low radio frequencies, indicating a possiblere-
acceleration of particles within the jet. The difference between
these features may be explained by changes in the environment
of the particles. The behaviour of the combined long-term ra-
dio spectra of the source gave rise to interpreting the emis-
sion as a two-component system composed of quiescent diffuse
emission overlaid by frequent outbursts. The signature of such
shocks should be traceable from higher to lower radio frequen-
cies. One flaring event at 37 GHz was visible on the investigated
time scales, but the expected signatures could not be found in
the other radio bands. The OVRO measurements had some gaps
during these days but did not show evidence of a significant flux
increase. Two of the nine photons with an energy> 100 GeV
were detected byFermi-LAT around the time of that flare. A
counterpart of this event was not found in the optical R-band
despite rather good optical coverage, which would hint at a dif-
ferent emission region of the 37 GHz and R-band emission if not
due to sampling effects. The flare on its own represents a rare
event for HBLs concerning its amplitude and time scale. A long-
term correlation analysis between the 15.0 GHz and R-band was
conducted, yielding no significant correlation between thetwo
bands.

The observed flat parsec-scale radio spectrum together with
the frequency-dependent core size (Table 3) and position shift,
indicated by a comparison of core–jet component distances
measured at 15.4 and 43.2 GHz by Piner & Edwards (2004)
and Piner et al. (2010), can be interpreted as a signature of a
Blandford & Königl (1979) type jet. Analysing all MOJAVE ob-
servations conducted until today, no significant motion of the
three identified jet components on time scales of eleven years
could be found, opposite to claims in previous publications. The
apparent jet speeds of the components wereβapp < 0.13, with
the most constraining value having been−0.01± 0.02.

Monitoring at soft and hard X-rays revealed only one sig-
nificant individual detection, though a general trend of positive
flux for BAT and ISGRI was apparent, leading to the detection
of the source by BAT from 58 months of data. The individual de-
tection, found by ASM, was coincident within a few days with a
higher state seen by XRT and a hint for an R-band flare seen by
KVA. Also the Effelsberg measurements showed increased ac-
tivity around this time period. However the sampling was insuf-
ficient for a meaningful investigation of the origin of the flare.
The BAT light curve was significantly variable. The long-term
trend measured by ASM did not show a hint of a positive signal.

From the observations, (quasi-)simultaneous SEDs for a low
and high X-ray flux state were constructed and modelled usinga
one-zone SSC as well as a self-consistent two-zone SSC model.
Both could describe the data well, however quasi-simultaneous
HE data posed some challenges for the modelling. In particular,
these disfavoured the one-zone models having aγmin of unity, be-
ing in general better described by the upper part of the tested pa-
rameter range. The one- and two-zone models suggested a shift
of the first SED peak by∼ 1.1 and∼ 0.4 orders of magnitude,
respectively. Direct fitting of the combined optical and X-ray
data did not result in a firm determination of the peak energies.
The individual parameters retrieved from the one- and two-zone
modelling were mostly in agreement between these two differ-
ent model approaches for each of the two flux states. They were
consistent with values found in archival campaigns as well as
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standard parameter ranges for HBLs. This concordance is not
self-evident in the context of “quiescent” state emission,where
the quiescent spectrum should be dominated by a low and con-
stant flux component which possibly has different spectral char-
acteristics. Either the “quiescent” state was not detectedwithin
this MW campaign, or the corresponding model parameters do
not differ significantly from the typical values. The two applied
models showed significant differences at high radio frequencies
and in the hard X-ray to HE bands. In the future, instruments
more sensitive in these regimes could probe the validity of the
models.
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Table A.1. SwiftXRT results.

Simple Power Law Fit Log-Parabolic Power Law Fit
Obs. IDa MJDstart Exp.b F (2− 10 keV)c ad χ2

red/d.o.f . F (0.2− 1 keV)e F (2− 10 keV)e af bf χ2
red/d.o.f . Lg HRh

[ks] [10−12 erg cm−2 s−1] [10−12 erg cm−2 s−1] [10−12 erg cm−2 s−1] [%]
35031019 54730.158 0.59 . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i

35031021 54745.554 1.75 10.8± 0.9 2.03± 0.11 0.77/17 2.50± 0.30 9.2± 0.8 1.79± 0.25 0.51± 0.30 0.61/18 85.1 1.17± 0.12
35031022 54749.513 0.94 9.8± 1.4 2.12± 0.23 0.79/7 3.05± 0.50 9.8± 1.5 2.12± 0.35 0.00± 0.00 0.93/6 0.0 0.80± 0.12
35031023 54757.762 1.23 9.5± 1.1 2.14± 0.18 1.55/13 3.09± 0.50 9.5± 1.4 2.14± 0.30 0.00± 0.00 1.68/12 0.0 0.95± 0.13
35031024 54759.895 2.23 14.2± 0.9 1.94± 0.09 1.10/30 2.90± 0.25 13.0± 0.8 1.80± 0.18 0.27± 0.25 1.07/29 82.9 1.21± 0.10
35031025 54760.899 2.31 14.4± 0.8 1.98± 0.08 1.04/42 3.16± 0.22 13.0± 0.9 1.80± 0.16 0.36± 0.26 0.95/41 96.0 1.17± 0.09
35031026 54761.904 2.27 13.4± 0.7 1.97± 0.08 1.32/32 2.91± 0.23 12.3± 0.9 1.84± 0.17 0.26± 0.25 1.29/31 85.6 1.22± 0.10
35031027 54762.908 2.42 10.9± 0.6 2.02± 0.09 1.12/28 1.67± 0.22 10.3± 0.8 1.94± 0.16 0.17± 0.17 1.12/27 69.9 1.06± 0.09
35031028 54763.167 4.91 10.5± 0.6 2.03± 0.06 1.20/48 2.61± 0.17 9.7± 0.6 1.92± 0.12 0.25± 0.21 1.15/47 93.0 1.07± 0.07
35031029 54764.857 1.58 10.0± 0.8 2.09± 0.12 0.97/17 2.64± 0.30 9.0± 1.0 1.92± 0.27 0.35± 0.34 0.93/16 78.5 1.09± 0.12
35031030 54765.917 2.53 9.6± 0.7 2.01± 0.08 1.36/26 2.11± 0.23 8.4± 0.8 1.75± 0.19 0.51± 0.30 1.07/25 98.6 1.13± 0.10
35031031 54766.865 1.19 8.1± 1.1 2.10± 0.20 0.88/8 2.25± 0.50 7.2± 1.2 1.99± 0.40 0.26± 0.26 0.99/7 24.9 0.86± 0.13
35031032 54767.869 2.75 8.0± 0.6 2.15± 0.10 0.76/26 2.58± 0.25 8.0± 0.9 2.14± 0.13 0.00± 0.00 0.79/25 6.9 0.87± 0.08
35031033 54768.806 2.29 7.9± 0.5 2.04± 0.11 0.99/18 1.82± 0.20 6.9± 0.8 1.78± 0.26 0.51± 0.42 0.84/17 92.9 1.13± 0.12
35031034 54769.932 1.87 11.5± 0.7 1.96± 0.10 1.09/20 2.44± 0.25 10.7± 0.9 1.83± 0.22 0.25± 0.25 1.07/19 76.4 1.21± 0.12
35031035 54770.881 2.10 9.6± 0.7 2.06± 0.11 0.58/21 2.60± 0.25 9.3± 1.0 2.02± 0.20 0.00± 0.00 0.60/20 31.8 1.01± 0.10
35031036 54771.933 1.65 9.9± 0.8 1.99± 0.11 1.36/15 1.93± 0.22 8.6± 0.9 1.58± 0.32 0.73± 0.50 1.01/14 97.7 1.23± 0.14
35031037 54772.892 0.19 . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i

35031038 54773.892 0.94 13.2± 1.7 1.86± 0.22 0.30/7 2.43± 0.50 12.4± 2.0 1.80± 0.50 0.14± 0.14 0.35/6 0.0 1.17± 0.18
35031039 54777.483 1.59 10.7± 0.7 2.16± 0.12 1.36/22 3.55± 0.30 10.6± 1.2 2.15± 0.25 0.00± 0.00 1.43/19 89.2 0.99± 0.10
35031040 54784.592 1.06 16.6± 1.7 1.76± 0.13 0.32/13 2.48± 0.30 15.9± 1.9 1.69± 0.30 0.13± 0.13 0.33/12 33.5 1.47± 0.18

Notes. (a) Swift observation ID.(b) Swift XRT exposure.(c) Integral flux between 2 and 10 keV determined by a simple powerlaw fit from 0.3 – 10 keV.(d) Spectral index determined by a simple
power law fit from 0.3 – 10 keV.(e) Integral flux determined by a log parabolic power law fit from 0.3 – 10 keV.( f ) Spectral indices determined from a log-parabola fit from 0.3– 10 keV.(g) Probability
that the log-parabolic power law fit is preferred over the simple power law fit by means of a logarithmic likelihood ratio test. (h) Hardness ratio, defined here as counts(2−10 keV)/counts(0.2−1 keV).
(i) Observation time too short for extracting results.
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Table A.2. Analysed MAGIC data sets and results using detec-
tion cuts to determine the significance and open cuts for the in-
tegral fluxes.

Data Seta Obs. Timeb teffc Sd F (> 170 GeV)e

[MJD] [h] [10−12 ph cm−2 s−1]
all data 54780.419 20.75 3.5 7.4± 2.1
period 1 54763.433 10.26 1.9 3.2± 2.9
period 2 54793.858 10.49 3.1 11.5± 2.9
21 Oct. 54759.973 1.42 1.3 10.6± 8.0
22 Oct. 54760.960 1.41 0.6 9.3± 7.8
23 Oct. 54761.954 1.35 1.1 < 17.4
24 Oct. 54762.931 1.42 0.4 < 12.5
25 Oct. 54763.949 3.22 1.5 < 15.6
26 Oct. 54764.946 1.14 0.0 < 19.5
28 Oct. 54766.919 0.30 −2.0 < 1.7
17 Nov. 54786.862 1.03 2.5 27.0± 9.9
18 Nov. 54787.873 2.14 −0.1 < 19.7
19 Nov. 54788.888 1.77 2.0 16.0± 7.2
24 Nov. 54793.866 2.12 1.2 9.5± 6.6
25 Nov. 54794.866 2.01 1.4 6.5± 6.4
28 Nov. 54797.841 0.62 −1.1 < 16.5
01 Dec. 54800.879 0.81 2.0 22.3± 10.0

Notes. (a) If dates are given, they correspond to the day following
the observation night.(b) Arithmetic average of observation duration.
(c) Effective observation time.(d) Significance of the signal calculated
according to Li & Ma (1983) Eq. 17.(e) Measured integral flux. ULs are
given with 95 % c.l.. We recall that the fluxes and signal significances
were determined using different cuts.

Table A.3. Calculated HE luminosities and number of events
above 100 GeV detected byFermi-LAT from five HBLs.

Source za Indexb L60 GeV
c Nd Ns

e

[1043 erg s−1]
Mrk 421 0.030 1.77± 0.01 19.2± 1.1 35 18
Mrk 501 0.034 1.74± 0.03 6.95± 0.75 16 10
1ES 2344+514 0.044 1.72± 0.08 2.30± 0.56 9 9
Mrk 180 0.046 1.74± 0.08 2.01± 0.51 1 1
1ES 1959+650 0.048 1.94± 0.03 6.00± 0.80 3 4

Notes. (a) Redshift.(b) Simple power law spectral index measured by
Fermi-LAT (Nolan et al. 2012). Note that for all sources the simple
power law is clearly preferred over a curved description of the spec-
trum. (c) Luminosity at 60 GeV, determined on the basis of the 10 –
100 GeV photon counts reported in Nolan et al. (2012).(d) Number of
events above 100 GeV.(e) Number of events above 100 GeV scaled to
the distance of 1ES 2344+514.
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Table A.4. SwiftUVOT results.

Obs. IDa MJDstart Exp.b FV FB FU FUVW1 FUVM2 FUVW2

[ks] [mag] [mag] [mag] [mag] [mag] [mag]
35031019 54730.158 0.89 15.45± 0.10 16.47± 0.10 16.69± 0.12 17.27± 0.20 17.76± 0.30 17.76± 0.15
35031021 54745.554 1.63 15.46± 0.10 16.49± 0.10 16.57± 0.12 17.20± 0.20 17.79± 0.30 17.63± 0.20
35031022 54749.513 0.88 15.47± 0.07 16.45± 0.07 16.53± 0.10 17.15± 0.10 17.57± 0.15 17.41± 0.10
35031023 54757.769 1.14 15.46± 0.10 16.52± 0.10 16.71± 0.12 17.30± 0.20 17.74± 0.30 17.49± 0.15
35031024 54759.895 2.18 15.47± 0.07 16.51± 0.07 16.66± 0.10 17.31± 0.10 17.73± 0.15 17.66± 0.10
35031025 54760.899 2.26 15.46± 0.07 16.52± 0.07 16.69± 0.10 17.27± 0.10 17.66± 0.15 17.62± 0.10
35031026 54761.904 2.23 15.46± 0.07 16.47± 0.07 16.56± 0.10 17.16± 0.10 17.68± 0.15 17.66± 0.10
35031027 54762.908 2.38 15.45± 0.07 16.46± 0.07 16.52± 0.10 17.17± 0.10 17.41± 0.15 17.54± 0.10
35031028 54763.167 4.83 15.46± 0.05 16.51± 0.05 16.57± 0.10 17.19± 0.10 17.59± 0.15 17.57± 0.10
35031029 54764.857 1.52 15.50± 0.07 16.46± 0.10 16.50± 0.10 17.10± 0.15 17.33± 0.20 17.50± 0.10
35031030 54765.917 2.48 15.41± 0.07 16.50± 0.07 16.57± 0.10 17.31± 0.10 17.58± 0.15 17.62± 0.10
35031031 54766.865 1.15 15.41± 0.10 16.49± 0.10 16.61± 0.10 17.20± 0.10 17.56± 0.30 17.55± 0.15
35031032 54767.869 2.68 15.48± 0.07 16.51± 0.10 16.65± 0.10 17.37± 0.10 17.80± 0.20 17.78± 0.10
35031033 54768.806 1.25 15.44± 0.07 16.50± 0.07 16.60± 0.10 17.23± 0.10 17.66± 0.20 17.67± 0.10
35031034 54769.932 1.82 15.50± 0.07 16.52± 0.07 16.67± 0.10 17.48± 0.10 17.62± 0.15 17.70± 0.10
35031035 54770.881 2.05 . . . . . . . . . . . . . . . . . .
35031036 54771.933 1.63 15.49± 0.07 16.51± 0.07 16.73± 0.10 17.38± 0.10 17.66± 0.15 17.58± 0.10
35031037 54772.892 0.18 . . . 16.54± 0.07 16.77± 0.10 17.22± 0.10 . . . . . .
35031038 54773.892 0.91 15.40± 0.07 16.44± 0.07 16.54± 0.10 17.12± 0.10 17.51± 0.20 17.49± 0.15
35031039 54777.483 1.54 15.39± 0.07 16.48± 0.07 16.54± 0.10 17.21± 0.10 17.62± 0.15 17.59± 0.10
35031040 54784.592 1.03 15.50± 0.07 16.52± 0.07 16.69± 0.10 17.36± 0.10 17.52± 0.15 17.68± 0.10

Notes. (a) Swiftobservation ID.(b) Swift total exposure of all UVOT filters.
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Fig. A.2. Individual radio spectra of Fig. 10.
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Table A.5. Gaussian Component Properties of 1ES 2344+514 measured with the VLBA at 15.4 GHz.

Component Epoch ra θb Sc Maj.d Axial PA f log Tb
g vapp

h βapp
i

[mas] [deg] [mJy] [mas] Ratioe [deg] [K] [µas yr−1]

Core

1999.75 . . . . . . 128.9 0.05 1.00 . . . 11.37

. . . . . .

1999.85 . . . . . . 136.4 . . . . . . . . . . . .
2000.02 . . . . . . 126.9 . . . . . . . . . . . .
2000.22 . . . . . . 134.4 . . . . . . . . . . . .
2008.41 . . . . . . 107.7 0.05 1.00 . . . 11.37
2008.76 . . . . . . 97.9 0.16 0.49 322 10.59
2008.81 . . . . . . 102.2 0.07 1.00 . . . 10.98
2009.15 . . . . . . 78.9 0.22 0.21 317 10.62
2009.42 . . . . . . 83.6 0.05 1.00 . . . 11.24
2009.51 . . . . . . 94.3 0.17 0.27 322 10.81
2009.63 . . . . . . 81.7 0.21 0.30 316 10.50
2009.94 . . . . . . 98.7 0.17 0.28 317 10.83
2010.71 . . . . . . 100.6 0.08 1.00 . . . 10.90
2010.84 . . . . . . 116.9 0.08 1.00 . . . 10.96

C 3

1999.75 0.543 126.1 3.2 0.20 1.00 . . . 8.62

−5± 7 −0.01± 0.02

1999.85 0.688 129.3 3.1 . . . . . . . . . . . .
2000.02 0.774 133.6 1.8 0.13 1.00 . . . 8.77
2000.22 0.491 134.6 5.2 0.31 1.00 . . . 8.44
2008.41 0.401 141.8 10.1 0.30 1.00 . . . 8.78
2008.76 0.630 136.6 7.7 0.22 1.00 . . . 8.91
2008.81 0.516 138.2 10.8 0.19 1.00 . . . 9.21
2009.15 0.728 138.3 7.4 0.20 1.00 . . . 8.97
2009.42 0.446 135.5 11.6 0.15 1.00 . . . 9.41
2009.51 0.591 140.4 8.3 0.14 1.00 . . . 9.36
2009.63 0.665 138.8 9.4 0.32 1.00 . . . 8.68
2009.94 0.637 136.8 8.0 0.20 1.00 . . . 9.03
2010.71 0.535 140.2 17.0 0.34 1.00 . . . 8.89
2010.84 0.554 138.4 10.7 0.16 1.00 . . . 9.34

C 2

1999.75 1.257 135.4 6.2 0.46 1.00 . . . 8.19

5± 7 0.01± 0.02

1999.85 1.538 135.9 3.6 0.13 1.00 . . . 9.06
2000.02 1.558 135.3 3.2 0.29 1.00 . . . 8.29
2000.22 1.541 138.6 5.0 0.44 1.00 . . . 8.13
2008.41 1.422 137.7 6.5 0.55 1.00 . . . 8.05
2008.76 1.731 140.5 4.9 0.43 1.00 . . . 8.14
2008.81 1.448 140.6 6.4 0.43 1.00 . . . 8.26
2009.15 1.521 141.1 5.0 0.40 1.00 . . . 8.20
2009.42 1.416 138.8 6.9 0.56 1.00 . . . 8.06
2009.51 1.394 139.5 7.2 0.55 1.00 . . . 8.10
2009.63 1.590 141.4 6.7 0.73 1.00 . . . 7.81
2009.94 1.491 141.3 6.9 0.50 1.00 . . . 8.16
2010.71 1.657 142.3 7.7 0.66 1.00 . . . 7.96
2010.84 1.481 141.5 12.9 0.75 1.00 . . . 8.07

C 1

1999.75 2.644 146.1 4.5 0.76 1.00 . . . 7.61

21± 24 0.06± 0.07

1999.85 2.832 141.9 3.1 0.73 1.00 . . . 7.48
2008.76 3.410 142.9 3.7 0.75 1.00 . . . 7.54
2008.81 2.725 140.2 3.1 1.18 1.00 . . . 7.07
2009.15 2.986 144.6 5.5 1.60 1.00 . . . 7.05
2009.42 3.007 140.9 3.2 1.10 1.00 . . . 7.15
2009.51 2.553 141.7 2.7 0.34 1.00 . . . 8.08
2009.63* 4.495 146.8 4.5 1.80 1.00 . . . 6.85
2009.94 2.998 142.3 3.3 1.44 1.00 . . . 6.92

Notes. An asterisk (*) indicates a component not used in the fit.
(a) Distance from core.(b) Position angle with respect to the core.(c) Flux density.(d) Major axis of fitted component.(e) Axial ratio of fitted
component.( f ) Position angle of component’s major axis.(g) Log brightness temperature.(h) Apparent jet speed.(i) βapp= vapp/c
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Fig. A.3. Distribution of flux density, flux or rate divided by the errorfor the individual light curves shown in Fig. 14, for the last
three panels including a fit with a Gaussian (shown in grey). See text for details.
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Fig. A.4. Distribution of rate divided by the error for the individualdaily-binned light curves ofRXTE ASM, Swift BAT and
INTEGRALISGRI including a fit with a Gaussian (shown in grey). See textfor details.
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